Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(5(m-3n))/(m-n)×(2(m-n))/(m-2n)

5(m3n)mn×2(mn)m2n \frac{5(m-3 n)}{m-n} \times \frac{2(m-n)}{m-2 n}

Full solution

Q. 5(m3n)mn×2(mn)m2n \frac{5(m-3 n)}{m-n} \times \frac{2(m-n)}{m-2 n}
  1. Write Given Expression: Write down the given expression.\newlineWe are given the expression 5(m3n)mn×2(mn)m2n\frac{5(m-3n)}{m-n} \times \frac{2(m-n)}{m-2n}.
  2. Factor Out Common Terms: Factor out common terms if possible.\newlineIn this case, we notice that (mn)(m-n) is a common term in both the numerator and the denominator. We can simplify the expression by canceling out the (mn)(m-n) terms.\newline5(m3n)mn×2(mn)m2n=5(m3n)×2m2n\frac{5(m-3n)}{m-n} \times \frac{2(m-n)}{m-2n} = 5(m-3n) \times \frac{2}{m-2n}
  3. Multiply Numerators and Denominators: Multiply the numerators and denominators.\newlineNow we multiply the numerators together and the denominators together.\newline5(m3n)×2=10(m3n)5(m-3n) \times 2 = 10(m-3n)\newlineThe denominator remains (m2n)(m-2n).
  4. Simplify Expression: Simplify the expression.\newlineWe now have 10(m3n)(m2n)\frac{10(m-3n)}{(m-2n)}. This is the simplified form of the expression, as there are no common factors that can be canceled out further.

More problems from Add, subtract, multiply, and divide polynomials