Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[4x+5y=12],[5x+7y=14]:}
solve for 
y

4x+5y=125x+7y=14 \begin{array}{l} 4 x+5 y=12 \\ 5 x+7 y=14 \end{array} \newlinesolve for y y

Full solution

Q. 4x+5y=125x+7y=14 \begin{array}{l} 4 x+5 y=12 \\ 5 x+7 y=14 \end{array} \newlinesolve for y y
  1. Write Equations: Write down the system of equations.\newlineWe have the following system of equations:\newline4x+5y=124x + 5y = 12\newline5x+7y=145x + 7y = 14\newlineWe need to solve for yy.
  2. Eliminate x: Multiply the first equation by 55 and the second equation by 44 to eliminate xx.\newlineMultiplying the first equation by 55:\newline(5)(4x)+(5)(5y)=(5)(12)(5)(4x) + (5)(5y) = (5)(12)\newline20x+25y=6020x + 25y = 60\newlineMultiplying the second equation by 44:\newline(4)(5x)+(4)(7y)=(4)(14)(4)(5x) + (4)(7y) = (4)(14)\newline20x+28y=5620x + 28y = 56
  3. Subtract Equations: Subtract the second new equation from the first new equation to eliminate xx.\newline(20x+25y)(20x+28y)=6056(20x + 25y) - (20x + 28y) = 60 - 56\newline20x+25y20x28y=420x + 25y - 20x - 28y = 4\newlineThe 20x20x terms cancel out, and we are left with:\newline25y28y=425y - 28y = 4
  4. Combine Terms: Combine like terms to solve for yy.25y28y=3y25y - 28y = -3ySo we have:3y=4-3y = 4
  5. Solve for y: Divide both sides by 3-3 to solve for y.\newliney=4(3)y = \frac{4}{(-3)}\newliney=43y = -\frac{4}{3}