Q. Write the expression in simplest form.(3x+y−1)(2x−4)−(3x+2y)2
Expand Terms: Expand the first term (3x+y−1)(2x−4). We distribute each term in the first binomial across the second binomial. (3x+y−1)(2x−4)=3x(2x)+3x(−4)+y(2x)+y(−4)−1(2x)−1(−4)
Simplify Expanded Expression: Simplify the expanded expression from Step 1. 3x(2x)+3x(−4)+y(2x)+y(−4)−1(2x)−1(−4)=6x2−12x+2xy−4y−2x+4
Combine Like Terms: Combine like terms in the simplified expression from Step 2.6x2−12x+2xy−4y−2x+4=6x2−14x+2xy−4y+4
Expand Second Term: Expand the second term (3x+2y)2. We use the formula (a+b)2=a2+2ab+b2 to expand the binomial. (3x+2y)2=(3x)2+2(3x)(2y)+(2y)2
Simplify Expanded Expression: Simplify the expanded expression from Step 4.(3x)2+2(3x)(2y)+(2y)2=9x2+12xy+4y2
Subtract Simplified Expressions: Subtract the simplified expression from Step 5 from the simplified expression from Step 3. 6x2−14x+2xy−4y+4−(9x2+12xy+4y2)
Distribute Negative Sign: Distribute the negative sign across the terms in the parentheses.6x2−14x+2xy−4y+4−9x2−12xy−4y2
Combine Like Terms: Combine like terms in the expression from Step 7.6x2−9x2−14x−12xy+2xy−4y2−4y+4= −3x2−14x−10xy−4y2−4y+4
More problems from Add, subtract, multiply, and divide polynomials