Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[3x-4y=10],[2x-4y=6]:}
If 
(x,y) satisfies the given system of equations, what is the value of 
y ?
Choose 1 answer:
(A) 
(1)/(10)
(B) 
(1)/(2)
(C) 
(16)/(5)
(D) 4

3x4y=102x4y=63x-4y=10 \\ 2x-4y=6\newline If (x,y)(x,y) satisfies the given system of equations, what is the value of yy?\newline Choose 11 answer:\newline (A) 110\frac{1}{10}\newline (B) 12\frac{1}{2}\newline (C) 165\frac{16}{5}\newline (D) 44

Full solution

Q. 3x4y=102x4y=63x-4y=10 \\ 2x-4y=6\newline If (x,y)(x,y) satisfies the given system of equations, what is the value of yy?\newline Choose 11 answer:\newline (A) 110\frac{1}{10}\newline (B) 12\frac{1}{2}\newline (C) 165\frac{16}{5}\newline (D) 44
  1. Write Equations: Write down the system of equations.\newlineWe have the following system of equations:\newline3x4y=103x - 4y = 10\newline2x4y=62x - 4y = 6
  2. Eliminate y: Subtract the second equation from the first equation to eliminate y.\newline(3x4y)(2x4y)=106(3x - 4y) - (2x - 4y) = 10 - 6\newlineThis simplifies to:\newline3x2x4y+4y=1063x - 2x - 4y + 4y = 10 - 6
  3. Simplify Result: Simplify the result of the subtraction. x=4x = 4 We have found the value of xx.
  4. Substitute xx: Substitute the value of xx into one of the original equations to solve for yy. Let's use the first equation: 3x4y=103x - 4y = 10 Substitute x=4x = 4: 3(4)4y=103(4) - 4y = 10
  5. Solve for y: Solve for y.\newline124y=1012 - 4y = 10\newlineSubtract 1212 from both sides:\newline4y=1012-4y = 10 - 12\newline4y=2-4y = -2
  6. Find y Value: Divide both sides by 4-4 to find the value of yy.y=24y = \frac{-2}{-4}y=12y = \frac{1}{2}