Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3x+27)(19x+12)(3x+27)(19x+12)

Full solution

Q. (3x+27)(19x+12)(3x+27)(19x+12)
  1. Distribute First Term: Distribute the first term of the first binomial across the second binomial.\newlineWe need to multiply 3x3x by each term in the second binomial (19x+1219x + 12).\newline3x×19x=57x23x \times 19x = 57x^2 (Multiplying the x terms)\newline3x×12=36x3x \times 12 = 36x (Multiplying x by the constant)\newlineSo, we have 57x2+36x57x^2 + 36x after this step.
  2. Distribute Second Term: Distribute the second term of the first binomial across the second binomial.\newlineNow we multiply 2727 by each term in the second binomial (19x+1219x + 12).\newline27×19x=513x27 \times 19x = 513x (Multiplying the constant by the x term)\newline27×12=32427 \times 12 = 324 (Multiplying the constants)\newlineSo, we have 513x+324513x + 324 after this step.
  3. Combine Results: Combine the results from Step 11 and Step 22.\newlineWe add the expressions we found in the previous steps together.\newline(57x2+36x)+(513x+324)(57x^2 + 36x) + (513x + 324)
  4. Combine Like Terms: Combine like terms.\newlineWe add the xx terms together.\newline57x2+(36x+513x)+32457x^2 + (36x + 513x) + 324\newline57x2+549x+32457x^2 + 549x + 324

More problems from Add and subtract polynomials