Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3t-2)/(4)-(2t+3)/(3)=(2)/(3)-t

3t242t+33=23t \frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2}{3}-t

Full solution

Q. 3t242t+33=23t \frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2}{3}-t
  1. Find Common Denominator: First, find a common denominator for all terms to eliminate the fractions.\newlineCommon denominator for 4,34, 3 is 1212.\newlineMultiply each term by 1212 to clear the fractions:\newline12×(3t24)12×(2t+33)=12×(23)12×t12 \times \left(\frac{3t-2}{4}\right) - 12 \times \left(\frac{2t+3}{3}\right) = 12 \times \left(\frac{2}{3}\right) - 12 \times t
  2. Clear Fractions: Simplify each term:\newline(124)(3t2)(123)(2t+3)=(122)12t(\frac{12}{4}) \cdot (3t-2) - (\frac{12}{3}) \cdot (2t+3) = (\frac{12}{2}) - 12t\newline3(3t2)4(2t+3)=612t3 \cdot (3t-2) - 4 \cdot (2t+3) = 6 - 12t
  3. Simplify Terms: Distribute and combine like terms:\newline9t68t12=812t9t - 6 - 8t - 12 = 8 - 12t\newlinet18=812tt - 18 = 8 - 12t
  4. Combine Like Terms: Add 12t12t to both sides to get all tt terms on one side:\newlinet+12t18=8t + 12t - 18 = 8\newline13t18=813t - 18 = 8
  5. Isolate Term with tt: Add 1818 to both sides to isolate the term with tt:13t=2613t = 26
  6. Solve for t: Divide both sides by 1313 to solve for t:\newlinet = 2613\frac{26}{13}\newlinet = 22

More problems from Add, subtract, multiply, and divide polynomials