Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3)/(sqrt3+sqrt2)-(3sqrt2)/(sqrt6+sqrt3)+(4sqrt3)/(sqrt2+sqrt6)

33+2326+3+432+6 \frac{3}{\sqrt{3}+\sqrt{2}}-\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}+\frac{4 \sqrt{3}}{\sqrt{2}+\sqrt{6}}

Full solution

Q. 33+2326+3+432+6 \frac{3}{\sqrt{3}+\sqrt{2}}-\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}+\frac{4 \sqrt{3}}{\sqrt{2}+\sqrt{6}}
  1. Rationalize First Fraction: To simplify the expression, we will rationalize the denominators of each fraction. Rationalize the denominator of the first fraction: (33+2)(\frac{3}{\sqrt{3}+\sqrt{2}}). Multiply the numerator and denominator by the conjugate of the denominator: (32)(\sqrt{3}-\sqrt{2}). (33+2)(32)(32)(\frac{3}{\sqrt{3}+\sqrt{2}}) * \frac{(\sqrt{3}-\sqrt{2})}{(\sqrt{3}-\sqrt{2})}
  2. Simplify First Fraction: Perform the multiplication in the numerator and denominator.\newlineNumerator: 3(32)=33323(\sqrt{3}-\sqrt{2}) = 3\sqrt{3} - 3\sqrt{2}\newlineDenominator: (3+2)(32)=3222=32=1(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2}) = \sqrt{3}^2 - \sqrt{2}^2 = 3 - 2 = 1\newlineSo, 33+2=3332\frac{3}{\sqrt{3}+\sqrt{2}} = 3\sqrt{3} - 3\sqrt{2}
  3. Rationalize Second Fraction: Rationalize the denominator of the second fraction: (32)/(6+3)(3\sqrt{2})/(\sqrt{6}+\sqrt{3}). Multiply the numerator and denominator by the conjugate of the denominator: (63)(\sqrt{6}-\sqrt{3}). (32)/(6+3)×(63)/(63)(3\sqrt{2})/(\sqrt{6}+\sqrt{3}) \times (\sqrt{6}-\sqrt{3})/(\sqrt{6}-\sqrt{3})
  4. Simplify Second Fraction: Perform the multiplication in the numerator and denominator.\newlineNumerator: 32(63)=312363\sqrt{2}(\sqrt{6}-\sqrt{3}) = 3\sqrt{12} - 3\sqrt{6}\newlineDenominator: (6+3)(63)=6232=63=3(\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3}) = \sqrt{6}^2 - \sqrt{3}^2 = 6 - 3 = 3\newlineSo, 326+3=312363\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}} = \frac{3\sqrt{12} - 3\sqrt{6}}{3}
  5. Simplify Second Fraction: Simplify the numerator of the second fraction. \newline3123\sqrt{12} can be simplified to 3(43)=323=633\sqrt{(4\cdot3)} = 3\cdot2\sqrt{3} = 6\sqrt{3}\newlineSo, (31236)/3=(6336)/3(3\sqrt{12} - 3\sqrt{6})/3 = (6\sqrt{3} - 3\sqrt{6})/3
  6. Rationalize Third Fraction: Divide each term in the numerator by the denominator.\newline(6336)/3=236(6\sqrt{3} - 3\sqrt{6})/3 = 2\sqrt{3} - \sqrt{6}\newlineSo, (32)/(6+3)=236(3\sqrt{2})/(\sqrt{6}+\sqrt{3}) = 2\sqrt{3} - \sqrt{6}
  7. Simplify Third Fraction: Rationalize the denominator of the third fraction: (43)/(2+6)(4\sqrt{3})/(\sqrt{2}+\sqrt{6}). Multiply the numerator and denominator by the conjugate of the denominator: (26)(\sqrt{2}-\sqrt{6}). (43)/(2+6)×(26)/(26)(4\sqrt{3})/(\sqrt{2}+\sqrt{6}) \times (\sqrt{2}-\sqrt{6})/(\sqrt{2}-\sqrt{6})
  8. Simplify Third Fraction: Perform the multiplication in the numerator and denominator.\newlineNumerator: 43(26)=464184\sqrt{3}(\sqrt{2}-\sqrt{6}) = 4\sqrt{6} - 4\sqrt{18}\newlineDenominator: (2+6)(26)=2262=26=4(\sqrt{2}+\sqrt{6})(\sqrt{2}-\sqrt{6}) = \sqrt{2}^2 - \sqrt{6}^2 = 2 - 6 = -4\newlineSo, 432+6=464184\frac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}} = \frac{4\sqrt{6} - 4\sqrt{18}}{-4}
  9. Combine Fractions: Simplify the numerator of the third fraction.\newline4184\sqrt{18} can be simplified to 492=432=1224\sqrt{9\cdot2} = 4\cdot3\sqrt{2} = 12\sqrt{2}\newlineSo, (46418)/(4)=(46122)/(4)(4\sqrt{6} - 4\sqrt{18})/(-4) = (4\sqrt{6} - 12\sqrt{2})/(-4)
  10. Combine Like Terms: Divide each term in the numerator by the denominator.\newline(46122)/(4)=6+32(4\sqrt{6} - 12\sqrt{2})/(-4) = -\sqrt{6} + 3\sqrt{2}\newlineSo, (43)/(2+6)=6+32(4\sqrt{3})/(\sqrt{2}+\sqrt{6}) = -\sqrt{6} + 3\sqrt{2}
  11. Combine Like Terms: Divide each term in the numerator by the denominator.\newline(46122)/(4)=6+32(4\sqrt{6} - 12\sqrt{2})/(-4) = -\sqrt{6} + 3\sqrt{2}\newlineSo, (43)/(2+6)=6+32(4\sqrt{3})/(\sqrt{2}+\sqrt{6}) = -\sqrt{6} + 3\sqrt{2}Combine all the simplified fractions.\newline(3332)(236)+(6+32)(3\sqrt{3} - 3\sqrt{2}) - (2\sqrt{3} - \sqrt{6}) + (-\sqrt{6} + 3\sqrt{2})
  12. Combine Like Terms: Divide each term in the numerator by the denominator.\newline(46122)/(4)=6+32(4\sqrt{6} - 12\sqrt{2})/(-4) = -\sqrt{6} + 3\sqrt{2}\newlineSo, (43)/(2+6)=6+32(4\sqrt{3})/(\sqrt{2}+\sqrt{6}) = -\sqrt{6} + 3\sqrt{2}Combine all the simplified fractions.\newline(3332)(236)+(6+32)(3\sqrt{3} - 3\sqrt{2}) - (2\sqrt{3} - \sqrt{6}) + (-\sqrt{6} + 3\sqrt{2})Combine like terms.\newline333223+66+323\sqrt{3} - 3\sqrt{2} - 2\sqrt{3} + \sqrt{6} - \sqrt{6} + 3\sqrt{2}\newline=(3323)+(32+32)+(66)= (3\sqrt{3} - 2\sqrt{3}) + (-3\sqrt{2} + 3\sqrt{2}) + (\sqrt{6} - \sqrt{6})\newline=3+0+0= \sqrt{3} + 0 + 0\newline=3= \sqrt{3}

More problems from Add, subtract, multiply, and divide polynomials