Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((-3)/(8)×(4)/(7))+((3)/(8)×(-11)/(7))

(38×47)+(38×117) \left(\frac{-3}{8} \times \frac{4}{7}\right)+\left(\frac{3}{8} \times \frac{-11}{7}\right)

Full solution

Q. (38×47)+(38×117) \left(\frac{-3}{8} \times \frac{4}{7}\right)+\left(\frac{3}{8} \times \frac{-11}{7}\right)
  1. Calculate Product of Fractions: Calculate the product of the first pair of fractions.\newlineWe need to multiply the numerators together and the denominators together.\newline(38)×(47)=3×48×7(-\frac{3}{8})\times(\frac{4}{7}) = \frac{-3\times4}{8\times7}\newline=1256= -\frac{12}{56}\newlineNow we simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 44.\newline1256=12÷456÷4-\frac{12}{56} = \frac{-12\div4}{56\div4}\newline=314= -\frac{3}{14}
  2. Calculate Second Product: Calculate the product of the second pair of fractions.\newlineSimilarly, we multiply the numerators together and the denominators together.\newline(38)×(117)=3×118×7(\frac{3}{8})\times(\frac{-11}{7}) = \frac{3\times-11}{8\times7}\newline=3356= \frac{-33}{56}\newlineWe can see that this fraction is already in its simplest form because 3333 and 5656 have no common divisors other than 11.
  3. Add Products Together: Add the two products together.\newlineNow we add the simplified fractions from Step 11 and Step 22.\newline314+(3356)-\frac{3}{14} + \left(-\frac{33}{56}\right)\newlineTo add these fractions, we need a common denominator. The least common denominator (LCD) for 1414 and 5656 is 5656.\newlineWe need to convert 314-\frac{3}{14} to a fraction with a denominator of 5656.\newline314=(3×4)/(14×4)-\frac{3}{14} = \left(-3\times4\right)/\left(14\times4\right)\newline=1256= -\frac{12}{56}\newlineNow we can add the two fractions since they have the same denominator.\newline1256+(3356)=(1233)/56-\frac{12}{56} + \left(-\frac{33}{56}\right) = \left(-12 - 33\right)/56\newline=4556= -\frac{45}{56}\newlineThis fraction is already in its simplest form because 141400 and 5656 have no common divisors other than 141422.

More problems from Add, subtract, multiply, and divide polynomials