Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-(3)/(2)x+5 < 7
What values of 
x satisfy the inequality?
Choose 1 answer:
(A) 
x < -8
(B) 
x > -3
(C) 
x > -(4)/(3)
(D) 
x > 8

-\frac{33}{22}x+55 < 77\newlineWhat values of \newlinex satisfy the inequality?\newlineChoose 11 answer:\newline(A) x < 8-8\newline(B) x > 3-3\newline(C) x > -\frac{44}{33}\newline(D) x > 88

Full solution

Q. -\frac{33}{22}x+55 < 77\newlineWhat values of \newlinex satisfy the inequality?\newlineChoose 11 answer:\newline(A) x < 8-8\newline(B) x > 3-3\newline(C) x > -\frac{44}{33}\newline(D) x > 88
  1. Isolate x term: Isolate the term containing x on one side of the inequality.\newlineSubtract 55 from both sides of the inequality -\frac{3}{2}x + 5 < 7.\newline-\frac{3}{2}x + 5 - 5 < 7 - 5\newline-\frac{3}{2}x < 2
  2. Subtract 55: Solve for xx by dividing both sides of the inequality by 32-\frac{3}{2}.\newlineRemember that dividing by a negative number reverses the inequality sign.\newlinex > \frac{2}{-\left(\frac{3}{2}\right)}\newlinex > 2 \times \left(-\frac{2}{3}\right)\newlinex > -\frac{4}{3}

More problems from Solve quadratic inequalities