Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the value of x: 2x61001+2x51002+2x41003=3\frac{2x-6}{1001}+\frac{2x-5}{1002}+\frac{2x-4}{1003}=3

Full solution

Q. Calculate the value of x: 2x61001+2x51002+2x41003=3\frac{2x-6}{1001}+\frac{2x-5}{1002}+\frac{2x-4}{1003}=3
  1. Write Equation: Write down the equation.\newline rac{2x-6}{1001} + rac{2x-5}{1002} + rac{2x-4}{1003} = 3
  2. Find Common Denominator: Find a common denominator for the fractions.\newlineThe common denominator for 10011001, 10021002, and 10031003 is their product, which is 1001×1002×10031001 \times 1002 \times 1003.
  3. Express with Common Denominator: Express each fraction with the common denominator. \newline(2x6)10021003100110021003+(2x5)10011003100110021003+(2x4)10011002100110021003=3(2x-6)\cdot\frac{1002\cdot1003}{1001\cdot1002\cdot1003} + (2x-5)\cdot\frac{1001\cdot1003}{1001\cdot1002\cdot1003} + (2x-4)\cdot\frac{1001\cdot1002}{1001\cdot1002\cdot1003} = 3
  4. Combine Fractions: Combine the fractions. (2x6)(10021003)+(2x5)(10011003)+(2x4)(10011002)100110021003=3\frac{(2x-6)\cdot(1002\cdot1003) + (2x-5)\cdot(1001\cdot1003) + (2x-4)\cdot(1001\cdot1002)}{1001\cdot1002\cdot1003} = 3
  5. Multiply by Common Denominator: Multiply both sides of the equation by the common denominator to clear the fractions.\newline(2x6)(10021003)+(2x5)(10011003)+(2x4)(10011002)=3(100110021003)(2x-6)\cdot(1002\cdot1003) + (2x-5)\cdot(1001\cdot1003) + (2x-4)\cdot(1001\cdot1002) = 3\cdot(1001\cdot1002\cdot1003)
  6. Simplify Left Side: Distribute and simplify the left side of the equation.\newline(2x10021003610021003)+(2x10011003510011003)+(2x10011002410011002)=3(100110021003)(2x\cdot1002\cdot1003 - 6\cdot1002\cdot1003) + (2x\cdot1001\cdot1003 - 5\cdot1001\cdot1003) + (2x\cdot1001\cdot1002 - 4\cdot1001\cdot1002) = 3\cdot(1001\cdot1002\cdot1003)
  7. Combine Like Terms: Combine like terms on the left side of the equation.\newline(2x(10021003+10011003+10011002))(610021003+510011003+410011002)=3(100110021003)(2x*(1002*1003 + 1001*1003 + 1001*1002)) - (6*1002*1003 + 5*1001*1003 + 4*1001*1002) = 3*(1001*1002*1003)
  8. Calculate Constants: Calculate the constants on the left side of the equation.\newlineLet's calculate the constant term separately:\newline- (6×1002×1003+5×1001×1003+4×1001×1002)(6 \times 1002 \times 1003 + 5 \times 1001 \times 1003 + 4 \times 1001 \times 1002)\newlineThis calculation is complex and prone to error, so we will use a calculator to ensure accuracy.
  9. Calculate Constant Term: Calculate the constant term.\newline- (6×1002×1003+5×1001×1003+4×1001×1002)=(6024018+5015005+4008008)(6\times1002\times1003 + 5\times1001\times1003 + 4\times1001\times1002) = - (6024018 + 5015005 + 4008008)\newline= (6024018+5015005+4008008)- (6024018 + 5015005 + 4008008)\newline= (15047031)- (15047031)
  10. Write Simplified Equation: Write down the simplified equation.\newline(2x(10021003+10011003+10011002))15047031=3(100110021003)(2x*(1002*1003 + 1001*1003 + 1001*1002)) - 15047031 = 3*(1001*1002*1003)
  11. Calculate Coefficient: Calculate the coefficient of 2x2x. \newline1002×1003+1001×1003+1001×1002=1005006+1004003+10030021002 \times 1003 + 1001 \times 1003 + 1001 \times 1002 = 1005006 + 1004003 + 1003002\newline=3012011= 3012011
  12. Write Equation with Coefficient: Write down the equation with the calculated coefficient.\newline(2x3012011)15047031=3(100110021003)(2x\cdot3012011) - 15047031 = 3\cdot(1001\cdot1002\cdot1003)
  13. Divide by Coefficient: Divide both sides of the equation by the coefficient of 2x2x to solve for xx. \newline2x=3×(1001×1002×1003)+1504703130120112x = \frac{3 \times (1001 \times 1002 \times 1003) + 15047031}{3012011}
  14. Calculate Right Side: Calculate the right side of the equation.\newlineWe will use a calculator to ensure accuracy.\newline3(100110021003)+15047031=3(1006012003)+150470313*(1001*1002*1003) + 15047031 = 3*(1006012003) + 15047031\newline=3018036009+15047031= 3018036009 + 15047031\newline=3033583040= 3033583040
  15. Divide by Coefficient: Divide the result by the coefficient of 2x2x. \newlinex=3033583040(2×3012011)x = \frac{3033583040}{(2\times3012011)}
  16. Calculate Value of x: Calculate the value of xx. \newlinex=30335830406024022x = \frac{3033583040}{6024022}\newlinex503.5x \approx 503.5

More problems from Add, subtract, multiply, and divide polynomials