Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.
(2x-1)/(x+3)+(1-2x)/(x-3)=((4-3x))/(x^(2)-9)

Solve the equation.\newline2x1x+3+12xx3=(43x)x29 \frac{2 x-1}{x+3}+\frac{1-2 x}{x-3}=\frac{(4-3 x)}{x^{2}-9}

Full solution

Q. Solve the equation.\newline2x1x+3+12xx3=(43x)x29 \frac{2 x-1}{x+3}+\frac{1-2 x}{x-3}=\frac{(4-3 x)}{x^{2}-9}
  1. Identify Common Denominator: Identify the common denominator for the two fractions.\newlineThe denominators are (x+3)(x+3) and (x3)(x-3). The common denominator will be the product of these two, which is (x+3)(x3)(x+3)(x-3) or x29x^2 - 9.
  2. Rewrite with Common Denominator: Rewrite each fraction with the common denominator.\newline(2x1)/(x+3)(2x-1)/(x+3) becomes ((2x1)(x3))/(x29)((2x-1)(x-3))/(x^2-9) and (12x)/(x3)(1-2x)/(x-3) becomes ((12x)(x+3))/(x29)((1-2x)(x+3))/(x^2-9).
  3. Expand Numerators: Expand the numerators of both fractions.\newlineFor the first fraction: (2x1)(x3)=2x(x)2x(3)1(x)+1(3)=2x26xx+3=2x27x+3(2x-1)(x-3) = 2x(x) - 2x(3) - 1(x) + 1(3) = 2x^2 - 6x - x + 3 = 2x^2 - 7x + 3.\newlineFor the second fraction: (12x)(x+3)=1(x)+1(3)2x(x)2x(3)=x+32x26x=2x25x+3(1-2x)(x+3) = 1(x) + 1(3) - 2x(x) - 2x(3) = x + 3 - 2x^2 - 6x = -2x^2 - 5x + 3.
  4. Combine over Common Denominator: Combine the expanded numerators over the common denominator.\newline(2x27x+32x25x+3)/(x29)(2x^2 - 7x + 3 - 2x^2 - 5x + 3) / (x^2 - 9).
  5. Simplify Combined Numerator: Simplify the combined numerator. 2x27x+32x25x+32x^2 - 7x + 3 - 2x^2 - 5x + 3 simplifies to 12x+6-12x + 6.
  6. Write Simplified Expression: Write the simplified expression.\newlineThe simplified form of the expression is (12x+6)/(x29)(-12x + 6) / (x^2 - 9).
  7. Check Match with Given Expression: Check if the simplified expression matches the given expression on the right side of the equation.\newlineThe given expression on the right side of the equation is (43x)/(x29)(4-3x) / (x^2 - 9). This does not match our simplified expression (12x+6)/(x29)(-12x + 6) / (x^2 - 9).

More problems from Add, subtract, multiply, and divide polynomials