Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.
(2x-1)/(3)+(1-2x)/(x-3)=((4-3x))/(x^(2)-9)

Solve the equation.\newline2x13+12xx3=(43x)x29 \frac{2 x-1}{3}+\frac{1-2 x}{x-3}=\frac{(4-3 x)}{x^{2}-9}

Full solution

Q. Solve the equation.\newline2x13+12xx3=(43x)x29 \frac{2 x-1}{3}+\frac{1-2 x}{x-3}=\frac{(4-3 x)}{x^{2}-9}
  1. Identify Common Denominator: Identify the common denominator for the fractions on the left side of the equation.\newlineThe common denominator for the fractions (2x1)/3(2x-1)/3 and (12x)/(x3)(1-2x)/(x-3) is 3(x3)3(x-3).
  2. Rewrite with Common Denominator: Rewrite each fraction with the common denominator.\newline(2x1)/3×(x3)/(x3)+(12x)/(x3)×3/3=((43x))/(x29)(2x-1)/3 \times (x-3)/(x-3) + (1-2x)/(x-3) \times 3/3 = ((4-3x))/(x^2-9)\newlineThis gives us ((2x1)(x3))/3(x3)+3(12x)/3(x3)((2x-1)(x-3))/3(x-3) + 3(1-2x)/3(x-3).
  3. Simplify Numerators: Simplify the numerators of the new fractions.\newline(2x1)(x3)3(x3)+3(12x)3(x3)\frac{(2x-1)(x-3)}{3(x-3)} + \frac{3(1-2x)}{3(x-3)}\newline= 2x26xx+33(x3)+36x3(x3)\frac{2x^2 - 6x - x + 3}{3(x-3)} + \frac{3 - 6x}{3(x-3)}\newline= 2x27x+33(x3)+36x3(x3)\frac{2x^2 - 7x + 3}{3(x-3)} + \frac{3 - 6x}{3(x-3)}
  4. Combine Numerators: Combine the numerators over the common denominator.\newline(2x27x+3+36x)/3(x3)(2x^2 - 7x + 3 + 3 - 6x)/3(x-3)\newline= (2x213x+6)/3(x3)(2x^2 - 13x + 6)/3(x-3)
  5. Factor Denominator: Notice that the right side of the equation has the denominator x29x^2 - 9, which factors to (x+3)(x3)(x+3)(x-3). We can now equate the numerators since the denominators are the same. (2x213x+6)=(43x)(2x^2 - 13x + 6) = (4 - 3x)
  6. Solve Equation: Solve the equation (2x213x+6)=(43x)(2x^2 - 13x + 6) = (4 - 3x) by moving all terms to one side.2x213x+64+3x=02x^2 - 13x + 6 - 4 + 3x = 02x210x+2=02x^2 - 10x + 2 = 0
  7. Simplify Equation: Simplify the equation by dividing all terms by x25x+12=0\frac{x^2 - 5x + 1}{2} = 0.
  8. Use Quadratic Formula: This is a quadratic equation, which can be solved by factoring, completing the square, or using the quadratic formula. However, this equation does not factor nicely, so we will use the quadratic formula.\newlinex=(5)±(5)24(1)(1)2(1)x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(1)}}{2(1)}\newlinex=5±2542x = \frac{5 \pm \sqrt{25 - 4}}{2}\newlinex=5±212x = \frac{5 \pm \sqrt{21}}{2}

More problems from Add, subtract, multiply, and divide polynomials