Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(2)/(sqrtx)+(3)/(sqrty)=2;(4)/(sqrtx)-(9)/(sqrty)=-1,x,y > 0

\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 ; \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1, \mathrm{x}, \mathrm{y}>0

Full solution

Q. 2x+3y=2;4x9y=1,x,y>0 \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 ; \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1, \mathrm{x}, \mathrm{y}>0
  1. Substitution of Variables: Let's denote u=1xu = \frac{1}{\sqrt{x}} and v=1yv = \frac{1}{\sqrt{y}}. This substitution will simplify the equations since we will be dealing with linear terms instead of rational expressions.
  2. Rewriting First Equation: Rewrite the first equation using the new variables uu and vv: 2u+3v=22u + 3v = 2.
  3. Rewriting Second Equation: Rewrite the second equation using the new variables uu and vv:4u9v=14u - 9v = -1.
  4. System of Linear Equations: Now we have a system of linear equations:\newline2u+3v=22u + 3v = 2,\newline4u9v=14u - 9v = -1.\newlineWe can solve this system using the method of substitution or elimination. Let's use the elimination method.
  5. Multiplying First Equation: Multiply the first equation by 22 to make the coefficients of uu the same in both equations:\newline(2u+3v)×2=2×2,(2u + 3v) \times 2 = 2 \times 2,\newlinewhich gives us 4u+6v=44u + 6v = 4.
  6. Subtracting Equations: Now subtract the second equation from the new equation obtained in the previous step:\newline(4u+6v)(4u9v)=4(1)(4u + 6v) - (4u - 9v) = 4 - (-1),\newlinewhich simplifies to 15v=515v = 5.
  7. Solving for v: Divide both sides of the equation by 1515 to solve for v: \newline15v15=515\frac{15v}{15} = \frac{5}{15},\newlinewhich gives us v=13v = \frac{1}{3}.
  8. Substituting Back for u: Now that we have the value of vv, we can substitute it back into one of the original equations to solve for uu. Let's use the first equation:\newline2u+3(13)=22u + 3(\frac{1}{3}) = 2,\newlinewhich simplifies to 2u+1=22u + 1 = 2.
  9. Solving for u: Subtract 11 from both sides of the equation to solve for uu: \newline2u+11=21,2u + 1 - 1 = 2 - 1,\newlinewhich gives us 2u=12u = 1.
  10. Finding x and y: Divide both sides of the equation by 22 to solve for u: \newline2u2=12\frac{2u}{2} = \frac{1}{2},\newlinewhich gives us u=12u = \frac{1}{2}.
  11. Substitute Values for xx and yy: Now that we have the values of uu and vv, we can find the values of xx and yy by reversing the substitution we made at the beginning:\newlineu=1xu = \frac{1}{\sqrt{x}} implies x=1u\sqrt{x} = \frac{1}{u},\newlinev=1yv = \frac{1}{\sqrt{y}} implies y=1v\sqrt{y} = \frac{1}{v}.
  12. Calculating xx and yy: Substitute the values of uu and vv to find xx and yy:
    x=112\sqrt{x} = \frac{1}{\frac{1}{2}} implies x=(112)2x = \left(\frac{1}{\frac{1}{2}}\right)^2,
    y=113\sqrt{y} = \frac{1}{\frac{1}{3}} implies y=(113)2y = \left(\frac{1}{\frac{1}{3}}\right)^2.
  13. Calculating x and y: Substitute the values of u and v to find x and y:\newlinex=112\sqrt{x} = \frac{1}{\frac{1}{2}} implies x=(112)2x = \left(\frac{1}{\frac{1}{2}}\right)^2,\newliney=113\sqrt{y} = \frac{1}{\frac{1}{3}} implies y=(113)2y = \left(\frac{1}{\frac{1}{3}}\right)^2.Calculate the values of x and y:\newlinex=(21)2=4x = \left(\frac{2}{1}\right)^2 = 4,\newliney=(31)2=9y = \left(\frac{3}{1}\right)^2 = 9.