Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((2^(-4))^(2))/(2^(-10))

(24)2210 \frac{\left(2^{-4}\right)^{2}}{2^{-10}}

Full solution

Q. (24)2210 \frac{\left(2^{-4}\right)^{2}}{2^{-10}}
  1. Simplify numerator: Simplify the numerator ((24)2)((2^{-4})^2). When raising a power to a power, you multiply the exponents. (24)2=24×2=28(2^{-4})^2 = 2^{-4 \times 2} = 2^{-8}
  2. Rewrite expression: Rewrite the expression using the simplified numerator.\newlineNow the expression is (28)/(210)(2^{-8})/(2^{-10}).
  3. Apply quotient rule: Apply the quotient rule for exponents.\newlineWhen dividing like bases with exponents, you subtract the exponents.\newline(28)/(210)=28(10)(2^{-8})/(2^{-10}) = 2^{-8 - (-10)}\newline=22= 2^{2}
  4. Calculate final result: Calculate the final result.\newline22=42^{2} = 4

More problems from Add, subtract, multiply, and divide polynomials