Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-15*2^(-0.5 x)=-90
What is the solution of the equation?
Round your answer, if necessary, to the nearest thousandth.

x~~

1520.5x=90 -15 \cdot 2^{-0.5 x}=-90 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newlinex x \approx

Full solution

Q. 1520.5x=90 -15 \cdot 2^{-0.5 x}=-90 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newlinex x \approx
  1. Write equation: Write down the given equation.\newlineWe have the equation 152(0.5x)=90-15 \cdot 2^{(-0.5 x)} = -90.
  2. Divide by ext{-}1515: Divide both sides of the equation by ext{-}1515 to isolate the exponential term.\newline ext{-}9090 / ext{-}1515 = 22^{( ext{-}00.55 x)} / ext{-}1515\newline6=2(ext0.5x)6 = 2^{( ext{-}0.5 x)}
  3. Apply logarithm: Apply the logarithm to both sides of the equation to solve for x.\newlinelog(6)=log(20.5x)\log(6) = \log(2^{-0.5 x})\newlineUse the power property of logarithms to bring down the exponent.\newlinelog(6)=0.5xlog(2)\log(6) = -0.5 x \cdot \log(2)
  4. Isolate x: Isolate x by dividing both sides by 0.5log(2)-0.5 \log(2).\newlinex=log(6)(0.5log(2))x = \frac{\log(6)}{(-0.5 \cdot \log(2))}
  5. Calculate x: Calculate the value of x using a calculator.\newlinex=log(6)0.5×log(2)x = \frac{\log(6)}{-0.5 \times \log(2)}\newlinex5.1699250010.5×0.3010299957x \approx \frac{5.169925001}{-0.5 \times 0.3010299957}\newlinex5.1699250010.15051499785x \approx \frac{5.169925001}{-0.15051499785}\newlinex34.343x \approx -34.343

More problems from Solve exponential equations using logarithms