Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for rr.\newline(1r2)+(1r27r+10)=(6r2)\left(\frac{1}{r-2}\right)+\left(\frac{1}{r^{2}-7r+10}\right)=\left(\frac{6}{r-2}\right)

Full solution

Q. Solve for rr.\newline(1r2)+(1r27r+10)=(6r2)\left(\frac{1}{r-2}\right)+\left(\frac{1}{r^{2}-7r+10}\right)=\left(\frac{6}{r-2}\right)
  1. Factor Quadratic Expression: Factor the quadratic expression in the denominator.\newlineThe quadratic expression r27r+10r^2 - 7r + 10 can be factored into (r5)(r2)(r - 5)(r - 2).\newliner27r+10=(r5)(r2)r^2 - 7r + 10 = (r - 5)(r - 2)
  2. Write with Factored Denominator: Write the given expression with the factored denominator.\newline(1)/(r2)+(1)/((r5)(r2))=(6)/(r2)(1)/(r-2) + (1)/((r-5)(r-2)) = (6)/(r-2)
  3. Find Common Denominator: Find a common denominator for the two fractions on the left side of the equation.\newlineThe common denominator is (r5)(r2)(r - 5)(r - 2).
  4. Rewrite with Common Denominator: Rewrite each fraction with the common denominator.\newline(1)/(r2)×((r5)/(r5))+(1)/((r5)(r2))=(6)/(r2)(1)/(r-2) \times ((r - 5)/(r - 5)) + (1)/((r-5)(r-2)) = (6)/(r-2)\newlineThis becomes:\newline((r5)+1)/((r5)(r2))=(6)/(r2)((r - 5) + 1)/((r-5)(r-2)) = (6)/(r-2)
  5. Combine Numerators: Combine the numerators of the fractions on the left side.\newline(r5)+1(r5)(r2)=r5+1(r5)(r2)\frac{(r - 5) + 1}{(r-5)(r-2)} = \frac{r - 5 + 1}{(r-5)(r-2)}\newlineThis simplifies to:\newliner4(r5)(r2)=6r2\frac{r - 4}{(r-5)(r-2)} = \frac{6}{r-2}
  6. Equate Numerators: Since the denominators on both sides of the equation are the same, we can equate the numerators.\newline(r4)=6(r - 4) = 6
  7. Solve for r: Solve for r.\newliner4=6r - 4 = 6\newliner=6+4r = 6 + 4\newliner=10r = 10

More problems from Add, subtract, multiply, and divide polynomials