Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function, f(x)=x^(2)-3x+9
Find when f(x)=7.
x=◻

For the function, f(x)=x23x+9 f(x)=x^{2}-3 x+9 \newlineFind when f(x)=7 f(x)=7 .\newlinex=x= \square

Full solution

Q. For the function, f(x)=x23x+9 f(x)=x^{2}-3 x+9 \newlineFind when f(x)=7 f(x)=7 .\newlinex=x= \square
  1. Set Equation Equal: To find the values of xx for which f(x)=7f(x) = 7, we need to solve the equation f(x)=7f(x) = 7 using the given function f(x)=x23x+9f(x) = x^2 - 3x + 9.\newlineSet f(x)f(x) equal to 77 and solve for xx:\newlinex23x+9=7x^2 - 3x + 9 = 7
  2. Subtract Constant Term: Subtract 77 from both sides of the equation to move the constant term to the left side:\newlinex23x+97=0x^2 - 3x + 9 - 7 = 0\newlinex23x+2=0x^2 - 3x + 2 = 0
  3. Factor Quadratic Equation: Now, we need to factor the quadratic equation or use the quadratic formula to find the values of xx. Let's try to factor it first:\newline(x1)(x2)=0(x - 1)(x - 2) = 0
  4. Solve for x: Set each factor equal to zero and solve for x:\newlinex1=0x - 1 = 0 or x2=0x - 2 = 0\newlinex=1x = 1 or x=2x = 2

More problems from Composition of linear and quadratic functions: find an equation