Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[(1)/(3)x=9],[y-(1)/(3)x=2]:}
The system of equations above has solution (x,y). What is the value of y ?
(A) (9)/(2)
(B) (11)/(2)
(C) 7
(D) 11

13x=9y13x=2 \begin{array}{c} \frac{1}{3} x=9 \\ y-\frac{1}{3} x=2 \end{array} \newlineThe system of equations above has solution (x,y) (x, y) . What is the value of y y ?\newline(A) 92 \frac{9}{2} \newline(B) 112 \frac{11}{2} \newline(C) 77\newline(D) 1111

Full solution

Q. 13x=9y13x=2 \begin{array}{c} \frac{1}{3} x=9 \\ y-\frac{1}{3} x=2 \end{array} \newlineThe system of equations above has solution (x,y) (x, y) . What is the value of y y ?\newline(A) 92 \frac{9}{2} \newline(B) 112 \frac{11}{2} \newline(C) 77\newline(D) 1111
  1. Solve for x: Solve the first equation for x.\newlineGiven the equation (13)x=9(\frac{1}{3})x = 9, we multiply both sides by 33 to isolate x.\newline(13)x×3=9×3(\frac{1}{3})x \times 3 = 9 \times 3\newlinex=27x = 27
  2. Substitute into second equation: Substitute the value of xx into the second equation to solve for yy. We have y13x=2y - \frac{1}{3}x = 2 and we know x=27x = 27, so we substitute 2727 for xx. y13(27)=2y - \frac{1}{3}(27) = 2 y9=2y - 9 = 2
  3. Add to solve for y: Add 99 to both sides of the equation to solve for y.\newliney9+9=2+9y - 9 + 9 = 2 + 9\newliney=11y = 11