Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Evaluate functions
Which of the following is not equivalent to
sin
π
3
\sin \frac{\pi}{3}
sin
3
π
?
\newline
sin
5
π
3
\sin \frac{5 \pi}{3}
sin
3
5
π
\newline
sin
2
π
3
\sin \frac{2 \pi}{3}
sin
3
2
π
\newline
sin
(
−
5
π
3
)
\sin \left(-\frac{5 \pi}{3}\right)
sin
(
−
3
5
π
)
\newline
sin
8
π
3
\sin \frac{8 \pi}{3}
sin
3
8
π
Get tutor help
Use the following function rule to find
f
(
187
)
f(187)
f
(
187
)
.
\newline
f
(
x
)
=
−
2
x
−
43
f(x) = -2 \sqrt{x-43}
f
(
x
)
=
−
2
x
−
43
\newline
f
(
187
)
=
□
f(187) = \square
f
(
187
)
=
□
Get tutor help
Use the following function rule to find
f
(
6
)
f(6)
f
(
6
)
.
\newline
f
(
x
)
=
8
+
6
x
f(x) = 8 + 6x
f
(
x
)
=
8
+
6
x
\newline
f
(
6
)
=
‾
f(6) = \underline{\hspace{3em}}
f
(
6
)
=
Get tutor help
Use the following function rule to find
f
(
4
)
f(4)
f
(
4
)
.
\newline
f
(
x
)
=
6
+
10
x
f(x) = 6 + 10x
f
(
x
)
=
6
+
10
x
\newline
f
(
4
)
=
f(4) =
f
(
4
)
=
_____
Get tutor help
Use the following function rule to find
f
(
1
)
f(1)
f
(
1
)
.
\newline
f
(
x
)
=
12
−
12
x
f(x) = 12 - 12x
f
(
x
)
=
12
−
12
x
\newline
f
(
1
)
=
f(1) =
f
(
1
)
=
_____
Get tutor help
Use the following function rule to find
f
(
2
)
f(2)
f
(
2
)
.
\newline
f
(
x
)
=
8
+
11
x
f(x) = 8 + 11x
f
(
x
)
=
8
+
11
x
\newline
f
(
2
)
=
f(2) =
f
(
2
)
=
_____
Get tutor help
Use the following function rule to find
f
(
77
)
f(77)
f
(
77
)
.
\newline
f
(
x
)
=
2
+
x
11
f(x) = 2 + \frac{x}{11}
f
(
x
)
=
2
+
11
x
\newline
f
(
77
)
=
f(77) =
f
(
77
)
=
_____
Get tutor help
Use the following function rule to find
f
(
92
)
f(92)
f
(
92
)
.
\newline
f
(
x
)
=
x
4
−
8
f(x) = \frac{x}{4} - 8
f
(
x
)
=
4
x
−
8
\newline
f
(
92
)
=
f(92) =
f
(
92
)
=
_____
Get tutor help
Given
y
=
3
sin
(
x
)
y=3 \sin (x)
y
=
3
sin
(
x
)
, find
d
y
d
x
\frac{d y}{d x}
d
x
d
y
.
\newline
Answer:
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Given the function
y
=
3
(
6
x
+
5
)
5
y=3(6 x+5)^{5}
y
=
3
(
6
x
+
5
)
5
, find
d
y
d
x
\frac{d y}{d x}
d
x
d
y
in any form.
\newline
Answer:
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Given the function
y
=
x
6
−
x
2
y=\frac{x}{6-x^{2}}
y
=
6
−
x
2
x
, find
d
y
d
x
\frac{d y}{d x}
d
x
d
y
in simplified form.
\newline
Answer:
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Previous
1
2
3