Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
sin ((pi)/(3)) ?

sin ((5pi)/(3))

sin ((2pi)/(3))

sin(-(5pi)/(3))

sin ((8pi)/(3))

Which of the following is not equivalent to sinπ3 \sin \frac{\pi}{3} ?\newlinesin5π3 \sin \frac{5 \pi}{3} \newlinesin2π3 \sin \frac{2 \pi}{3} \newlinesin(5π3) \sin \left(-\frac{5 \pi}{3}\right) \newlinesin8π3 \sin \frac{8 \pi}{3}

Full solution

Q. Which of the following is not equivalent to sinπ3 \sin \frac{\pi}{3} ?\newlinesin5π3 \sin \frac{5 \pi}{3} \newlinesin2π3 \sin \frac{2 \pi}{3} \newlinesin(5π3) \sin \left(-\frac{5 \pi}{3}\right) \newlinesin8π3 \sin \frac{8 \pi}{3}
  1. Determine Equivalent Options: We need to determine which of the given options is not equivalent to sin(π3)\sin\left(\frac{\pi}{3}\right). We will use the properties of the sine function, including its periodicity and symmetry, to evaluate each option.
  2. Evaluate sin(5π3)\sin\left(\frac{5\pi}{3}\right): First, let's consider sin(π3)\sin\left(\frac{\pi}{3}\right). The sine function has a period of 2π2\pi, which means sin(x)=sin(x+2πk)\sin(x) = \sin(x + 2\pi \cdot k) for any integer kk. Also, sin(x)=sin(πx)\sin(x) = \sin(\pi - x) due to the symmetry of the sine function in the first and second quadrants.
  3. Evaluate sin(2π3)\sin\left(\frac{2\pi}{3}\right): Now, let's evaluate sin(5π3)\sin\left(\frac{5\pi}{3}\right). We can write 5π3\frac{5\pi}{3} as π3+4π3\frac{\pi}{3} + \frac{4\pi}{3}, which is π3+2π×23\frac{\pi}{3} + 2\pi \times \frac{2}{3}. Since 23\frac{2}{3} is not an integer, we cannot directly apply the periodicity property. However, we can subtract 2π2\pi from 5π3\frac{5\pi}{3} to get a co-terminal angle: sin(5π32π)=sin(5π36π3)=sin(π3)\sin\left(\frac{5\pi}{3} - 2\pi\right) = \sin\left(\frac{5\pi}{3} - \frac{6\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right). Since sin(x)=sin(x)\sin(-x) = -\sin(x), we have sin(5π3)\sin\left(\frac{5\pi}{3}\right)00. Therefore, sin(5π3)\sin\left(\frac{5\pi}{3}\right) is not equivalent to sin(5π3)\sin\left(\frac{5\pi}{3}\right)22 because it is the negative of sin(5π3)\sin\left(\frac{5\pi}{3}\right)22.
  4. Evaluate sin(5π3)\sin\left(-\frac{5\pi}{3}\right): Next, let's evaluate sin(2π3)\sin\left(\frac{2\pi}{3}\right). Using the symmetry property sin(x)=sin(πx)\sin(x) = \sin(\pi - x), we have sin(2π3)=sin(π2π3)=sin(π3)\sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right). Therefore, sin(2π3)\sin\left(\frac{2\pi}{3}\right) is equivalent to sin(π3)\sin\left(\frac{\pi}{3}\right).
  5. Evaluate sin(8π3)\sin\left(\frac{8\pi}{3}\right): Now, let's evaluate sin(5π3)\sin\left(-\frac{5\pi}{3}\right). We can add 2π2\pi to 5π3-\frac{5\pi}{3} to find a co-terminal angle in the standard range [0,2π)[0, 2\pi): sin(5π3+2π)=sin(5π3+6π3)=sin(π3)\sin\left(-\frac{5\pi}{3} + 2\pi\right) = \sin\left(-\frac{5\pi}{3} + \frac{6\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right). Therefore, sin(5π3)\sin\left(-\frac{5\pi}{3}\right) is equivalent to sin(π3)\sin\left(\frac{\pi}{3}\right).
  6. Evaluate sin(8π3)\sin\left(\frac{8\pi}{3}\right): Now, let's evaluate sin(5π3)\sin\left(-\frac{5\pi}{3}\right). We can add 2π2\pi to 5π3-\frac{5\pi}{3} to find a co-terminal angle in the standard range [0,2π)[0, 2\pi): sin(5π3+2π)=sin(5π3+6π3)=sin(π3)\sin\left(-\frac{5\pi}{3} + 2\pi\right) = \sin\left(-\frac{5\pi}{3} + \frac{6\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right). Therefore, sin(5π3)\sin\left(-\frac{5\pi}{3}\right) is equivalent to sin(π3)\sin\left(\frac{\pi}{3}\right).Finally, let's evaluate sin(8π3)\sin\left(\frac{8\pi}{3}\right). We can subtract 2π2\pi from sin(5π3)\sin\left(-\frac{5\pi}{3}\right)00 to find a co-terminal angle: sin(5π3)\sin\left(-\frac{5\pi}{3}\right)11. As we determined in a previous step, sin(5π3)\sin\left(-\frac{5\pi}{3}\right)22 is equivalent to sin(π3)\sin\left(\frac{\pi}{3}\right). Therefore, sin(8π3)\sin\left(\frac{8\pi}{3}\right) is also equivalent to sin(π3)\sin\left(\frac{\pi}{3}\right).

More problems from Evaluate functions