Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Inverses of sin, cos, and tan: radians
Find the principal value of
\newline
cos
−
1
(
−
1
2
)
.
\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right) \text {. }
cos
−
1
(
−
2
1
)
.
\newline
Note: Input in radians.
Get tutor help
0
0
0
≤
θ
≤
π
\leq \theta \leq \pi
≤
θ
≤
π
. Find the value of
θ
\theta
θ
in radians.
\newline
θ
=
−
3
/
2
\theta = -\sqrt{3}/2
θ
=
−
3
/2
\newline
Write your answer in simplified, rationalized form. Do not round.
\newline
θ
=
\theta =
θ
=
______
Get tutor help
0
0
0
≤
θ
≤
π
\leq \theta \leq \pi
≤
θ
≤
π
. Find the value of
θ
\theta
θ
in radians.
\newline
θ
=
−
1
\theta = -1
θ
=
−
1
\newline
Write your answer in simplified, rationalized form. Do not round.
\newline
θ
=
\theta =
θ
=
______
Get tutor help
\newline
−
π
2
≤
θ
≤
π
2
- \frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
−
2
π
≤
θ
≤
2
π
. Find the value of
θ
\theta
θ
in radians.
\newline
θ
=
−
3
2
\theta = -\sqrt{\frac{3}{2}}
θ
=
−
2
3
\newline
Write your answer in simplified, rationalized form. Do not round.
\newline
θ
=
\theta =
θ
=
______
\newline
Get tutor help
-
π
2
≤
θ
≤
π
2
\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
2
π
≤
θ
≤
2
π
. Find the value of
θ
\theta
θ
in radians.
\newline
θ
=
0
\theta = 0
θ
=
0
\newline
Write your answer in simplified, rationalized form. Do not round.
\newline
θ
=
\theta =
θ
=
______
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
−
34
1
∘
-341^{\circ}
−
34
1
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
64
5
∘
645^{\circ}
64
5
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help
Find an angle
θ
\theta
θ
coterminal to
101
1
∘
1011^{\circ}
101
1
∘
, where
0
∘
≤
θ
<
36
0
∘
0^{\circ} \leq \theta<360^{\circ}
0
∘
≤
θ
<
36
0
∘
.
\newline
Answer:
Get tutor help