Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Inverses of csc, sec, and cot
If line
y
=
m
x
y = mx
y
=
m
x
makes an angle
45
45
45
degree with
y
y
y
-axis, then
m
=
?
m = ?
m
=
?
Get tutor help
What is the cylindrical equation of the surface whose spherical equation is
ρ
=
4
\rho=4
ρ
=
4
Get tutor help
Find the reference angle for a rotation of
2
π
7
\frac{2 \pi}{7}
7
2
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
12
π
11
\frac{12 \pi}{11}
11
12
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
4
π
9
\frac{4 \pi}{9}
9
4
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
6
π
5
\frac{6 \pi}{5}
5
6
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
5
π
8
\frac{5 \pi}{8}
8
5
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
4
π
5
\frac{4 \pi}{5}
5
4
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
10
π
13
\frac{10 \pi}{13}
13
10
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
7
π
12
\frac{7 \pi}{12}
12
7
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
5
π
9
\frac{5 \pi}{9}
9
5
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
6
π
11
\frac{6 \pi}{11}
11
6
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
4
π
11
\frac{4 \pi}{11}
11
4
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
9
π
8
\frac{9 \pi}{8}
8
9
π
.
\newline
Answer:
\newline
Get tutor help
Find the reference angle for a rotation of
13
π
12
\frac{13 \pi}{12}
12
13
π
.
\newline
Answer:
\newline
Get tutor help
The following are all angle measures, in degrees, whose cosine is
−
1
-1
−
1
.
\newline
Which is the principal value of
arccos
(
−
1
)
\arccos (-1)
arccos
(
−
1
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
54
0
∘
-540^{\circ}
−
54
0
∘
\newline
(B)
−
18
0
∘
-180^{\circ}
−
18
0
∘
\newline
(C)
18
0
∘
180^{\circ}
18
0
∘
\newline
(D)
54
0
∘
540^{\circ}
54
0
∘
Get tutor help
The following are all angle measures, in degrees, whose sine is
1
1
1
.
\newline
Which is the principal value of
sin
−
1
(
1
)
?
\sin ^{-1}(1) ?
sin
−
1
(
1
)?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
63
0
∘
-630^{\circ}
−
63
0
∘
\newline
(B)
−
27
0
∘
-270^{\circ}
−
27
0
∘
\newline
(C)
9
0
∘
90^{\circ}
9
0
∘
\newline
(D)
45
0
∘
450^{\circ}
45
0
∘
Get tutor help
f
(
x
)
=
100
(
0.95
)
x
f(x)=100(0.95)^{x}
f
(
x
)
=
100
(
0.95
)
x
\newline
If the function is graphed in the
x
y
x y
x
y
plane, what is the
y
y
y
-intercept of the graph?
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
0
0
0
.
95
95
95
\newline
(C)
95
95
95
\newline
(D)
100
100
100
Get tutor help
If
y
=
30
(
9
10
)
x
y=30\left(\frac{9}{10}\right)^{x}
y
=
30
(
10
9
)
x
is graphed in the
x
y
x y
x
y
-plane, which of the following characteristics of the graph is displayed as a constant or coefficient in the equation?
\newline
Choose
1
1
1
answer:
\newline
(A) Slope
\newline
B The value
y
y
y
approaches as
x
x
x
decreases
\newline
(C)
x
x
x
-intercept
\newline
(D)
y
y
y
-intercept
Get tutor help
If
θ
=
π
9
\theta=\frac{\pi}{9}
θ
=
9
π
radians, what is the value of
θ
\theta
θ
in degrees?
Get tutor help
If
θ
=
2
π
3
\theta=\frac{2 \pi}{3}
θ
=
3
2
π
radians, what is the value of
θ
\theta
θ
in degrees?
Get tutor help
If
θ
=
π
12
\theta=\frac{\pi}{12}
θ
=
12
π
radians, what is the value of
θ
\theta
θ
in degrees?
Get tutor help
If
θ
=
π
2
\theta=\frac{\pi}{2}
θ
=
2
π
radians, which of the following shows the measure of
θ
\theta
θ
in degrees?
\newline
Choose
1
1
1
answer:
\newline
(A)
4
5
∘
45^{\circ}
4
5
∘
\newline
(B)
9
0
∘
90^{\circ}
9
0
∘
\newline
(C)
13
5
∘
135^{\circ}
13
5
∘
\newline
(D)
18
0
∘
180^{\circ}
18
0
∘
Get tutor help
If
θ
=
3
π
2
\theta=\frac{3 \pi}{2}
θ
=
2
3
π
radians, what is the value of
θ
\theta
θ
in degrees?
Get tutor help
θ
\theta
θ
is an acute angle. Find the value of
θ
\theta
θ
in degrees.
\newline
sec
(
θ
)
=
2
\sec(\theta) = \sqrt{2}
sec
(
θ
)
=
2
\newline
θ
=
\theta =
θ
=
____
°
\degree
°
Get tutor help