Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Simplify linear expressions using properties
Simplify the expression:
\newline
6
(
6
v
)
6(6v)
6
(
6
v
)
Get tutor help
Simplify the expression:
\newline
(
4
+
r
)
+
3
=
(4 + r) + 3 =
(
4
+
r
)
+
3
=
_____
Get tutor help
Simplify the expression:
\newline
(
q
+
4
)
+
1
=
_
_
_
_
_
(q + 4) + 1 = \_\_\_\_\_
(
q
+
4
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
5
(
5
d
)
=
5(5d) =
5
(
5
d
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
+
(
v
+
1
)
=
2 + (v + 1) =
2
+
(
v
+
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
r
+
4
)
+
2
=
(r + 4) + 2 =
(
r
+
4
)
+
2
=
_____
Get tutor help
Simplify the expression:
\newline
7
(
4
c
)
=
7(4c) =
7
(
4
c
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
4
u
)
(
2
)
=
(4u)(2) =
(
4
u
)
(
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
+
(
q
+
4
)
=
2 + (q + 4) =
2
+
(
q
+
4
)
=
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Simplify the expression:
\newline
3
(
7
t
)
=
3(7t) =
3
(
7
t
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
3
t
)
3(3t)
3
(
3
t
)
Get tutor help
Simplify the expression:
\newline
2
+
(
g
+
3
)
=
2 + (g + 3) =
2
+
(
g
+
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
d
+
5
)
+
3
=
(d + 5) + 3 =
(
d
+
5
)
+
3
=
_____
Get tutor help
Simplify the expression:
\newline
(
v
+
5
)
+
1
=
(v + 5) + 1 =
(
v
+
5
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
(
3
+
k
)
+
2
=
(3 + k) + 2 =
(
3
+
k
)
+
2
=
_____
Get tutor help
Simplify the expression:
\newline
(
m
+
2
)
+
1
=
(m + 2) + 1 =
(
m
+
2
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
(
4
+
g
)
+
2
=
(4 + g) + 2 =
(
4
+
g
)
+
2
=
_____
Get tutor help
Simplify the expression:
\newline
1
+
(
5
+
x
)
=
1 + (5 + x) =
1
+
(
5
+
x
)
=
_____
Get tutor help
Simplify the expression:
\newline
1
+
(
t
+
4
)
=
1 + (t + 4) =
1
+
(
t
+
4
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
8
x
)
(
6
)
=
(8x)(6) =
(
8
x
)
(
6
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
4
b
)
=
2(4b) =
2
(
4
b
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
d
+
5
)
+
1
=
(d + 5) + 1 =
(
d
+
5
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
(
1
+
h
)
+
3
=
(1 + h) + 3 =
(
1
+
h
)
+
3
=
_____
Get tutor help
Simplify the expression:
\newline
(
4
b
)
(
7
)
=
(4b)(7) =
(
4
b
)
(
7
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
k
+
2
)
+
2
=
(k + 2) + 2 =
(
k
+
2
)
+
2
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
5
d
)
=
2(5d) =
2
(
5
d
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
d
+
6
)
+
2
=
(d + 6) + 2 =
(
d
+
6
)
+
2
=
_____
Get tutor help
Simplify the expression:
\newline
(
r
+
2
)
+
2
=
(r + 2) + 2 =
(
r
+
2
)
+
2
=
_____
Get tutor help
Simplify the expression:
\newline
(
v
+
2
)
+
4
=
_
_
_
_
_
(v + 2) + 4 = \_\_\_\_\_
(
v
+
2
)
+
4
=
_____
Get tutor help
Simplify the expression:
\newline
2
+
(
4
+
n
)
=
2 + (4 + n) =
2
+
(
4
+
n
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
7
v
)
(
6
)
=
(7v)(6) =
(
7
v
)
(
6
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
y
+
4
)
+
2
=
_
_
_
_
_
(y + 4) + 2 = \_\_\_\_\_
(
y
+
4
)
+
2
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
2
r
)
=
2(2r) =
2
(
2
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
6
(
5
b
)
=
6(5b) =
6
(
5
b
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
y
+
3
)
+
1
=
(y + 3) + 1 =
(
y
+
3
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
(
3
+
t
)
+
1
=
(3 + t) + 1 =
(
3
+
t
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
1
+
(
u
+
3
)
=
1 + (u + 3) =
1
+
(
u
+
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
7
r
)
=
2(7r) =
2
(
7
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
7
+
(
v
+
2
)
=
7 + (v + 2) =
7
+
(
v
+
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
r
+
3
)
+
1
=
_
_
_
_
_
(r + 3) + 1 = \_\_\_\_\_
(
r
+
3
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
(
v
+
1
)
+
1
=
(v + 1) + 1 =
(
v
+
1
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
(
f
+
2
)
+
4
=
(f + 2) + 4 =
(
f
+
2
)
+
4
=
_____
Get tutor help
Simplify the expression:
\newline
4
(
4
c
)
4(4c)
4
(
4
c
)
Get tutor help
Simplify the expression:
\newline
(
3
+
k
)
+
1
=
(3 + k) + 1 =
(
3
+
k
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
(
3
+
g
)
+
1
=
(3 + g) + 1 =
(
3
+
g
)
+
1
=
_____
Get tutor help
Simplify the expression:
\newline
4
(
2
n
)
=
4(2n) =
4
(
2
n
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
n
+
3
)
+
1
=
(n + 3) + 1 =
(
n
+
3
)
+
1
=
_____
Get tutor help
Rewrite in simplest terms:
(
−
2
x
+
9
)
+
(
6
x
−
3
)
(-2 x+9)+(6 x-3)
(
−
2
x
+
9
)
+
(
6
x
−
3
)
\newline
Answer:
Get tutor help
Apply the distributive property to create an equivalent expression.
\newline
−
9
⋅
(
5
j
+
k
)
=
-9 \cdot(5 j+k)=
−
9
⋅
(
5
j
+
k
)
=
Get tutor help
Apply the distributive property to create an equivalent expression.
\newline
(
m
−
3
+
4
n
)
⋅
(
−
8
)
=
(m-3+4 n) \cdot(-8)=
(
m
−
3
+
4
n
)
⋅
(
−
8
)
=
Get tutor help
Previous
1
2
3
Next