Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Dilations of functions
A simple random sample of size
n
=
36
n=36
n
=
36
is obtained from a population that is skewed right with
μ
=
80
\mu=80
μ
=
80
and
σ
=
24
\sigma=24
σ
=
24
.
\newline
(a) Describe the sampling distribution of
x
ˉ
\bar{x}
x
ˉ
.
\newline
(b) What is
P
(
x
ˉ
>
86.8
)
P(\bar{x} > 86.8)
P
(
x
ˉ
>
86.8
)
?
\newline
(c) What is
P
(
x
ˉ
≤
70.2
)
P(\bar{x} \leq 70.2)
P
(
x
ˉ
≤
70.2
)
?
\newline
(d) What is
P
(
74
<
x
ˉ
<
89.6
)
P(74 < \bar{x} < 89.6)
P
(
74
<
x
ˉ
<
89.6
)
?
Get tutor help
A function
h
(
t
)
h(t)
h
(
t
)
increases by
9
9
9
over every unit interval in
t
t
t
and
h
(
0
)
=
0
h(0) = 0
h
(
0
)
=
0
.
\newline
Which could be a function rule for
h
(
t
)
h(t)
h
(
t
)
?
\newline
Choices:
\newline
(A)
h
(
t
)
=
9
t
h(t) = 9t
h
(
t
)
=
9
t
\newline
(B)
h
(
t
)
=
−
t
9
h(t) = -\frac{t}{9}
h
(
t
)
=
−
9
t
\newline
(C)
h
(
t
)
=
t
−
9
h(t) = t - 9
h
(
t
)
=
t
−
9
\newline
(D)
h
(
t
)
=
9
t
h(t) = 9^t
h
(
t
)
=
9
t
Get tutor help
The All-Clean Laundry Company washes towels for a nearby hotel. The function
f
(
x
)
f(x)
f
(
x
)
gives the number of loads required when there are
x
x
x
bins of towels to be washed.
\newline
What does
f
(
9
)
>
12
f(9) > 12
f
(
9
)
>
12
tell you?
\newline
Choices:
\newline
(A)It takes more than
9
9
9
loads to wash
12
12
12
bins of towels.
\newline
(B)It takes more than
12
12
12
loads to wash
9
9
9
bins of towels.
Get tutor help
Find the
y
y
y
-coordinate of the
y
y
y
-intercept of the polynomial function defined below.
\newline
f
(
x
)
=
−
2
(
x
−
1
)
f(x)=-2(x-1)
f
(
x
)
=
−
2
(
x
−
1
)
\newline
Answer:
Get tutor help
Determine whether the function
f
(
x
)
f(x)
f
(
x
)
is continuous at
x
=
−
3
x=-3
x
=
−
3
.
\newline
f
(
x
)
=
{
18
−
x
2
,
x
≤
−
3
15
+
3
x
,
x
>
−
3
f(x)=\left\{\begin{array}{ll} 18-x^{2}, & x \leq-3 \\ 15+3 x, & x>-3 \end{array}\right.
f
(
x
)
=
{
18
−
x
2
,
15
+
3
x
,
x
≤
−
3
x
>
−
3
\newline
f
(
x
)
f(x)
f
(
x
)
is discontinuous at
x
=
−
3
x=-3
x
=
−
3
\newline
f
(
x
)
f(x)
f
(
x
)
is continuous at
x
=
−
3
x=-3
x
=
−
3
Get tutor help
lim
x
→
π
4
cos
(
x
)
=
?
\lim _{x \rightarrow \frac{\pi}{4}} \cos (x)=?
x
→
4
π
lim
cos
(
x
)
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
\frac{\sqrt{2}}{2}
2
2
\newline
(D) The limit doesn't exist.
Get tutor help