Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for z.
z^(2)-4z+4+2i=0

Solve for zz.\newlinez24z+4+2i=0 z^{2}-4 z+4+2 i=0

Full solution

Q. Solve for zz.\newlinez24z+4+2i=0 z^{2}-4 z+4+2 i=0
  1. Identify Quadratic Equation: Step Title: Identify the Quadratic Equation\newlineConcise Step Description: Recognize the given equation as a quadratic equation in the complex number system.\newlineStep Calculation: The given equation is z24z+(4+2i)=0z^2 - 4z + (4 + 2i) = 0.\newlineStep Output: Quadratic Equation: z24z+(4+2i)=0z^2 - 4z + (4 + 2i) = 0
  2. Complete the Square: Step Title: Complete the Square\newlineConcise Step Description: Complete the square for the quadratic equation to find the roots.\newlineStep Calculation: \newline11. Group the real coefficients: (z24z+4)+2i=0(z^2 - 4z + 4) + 2i = 0\newline22. Recognize that (z24z+4)(z^2 - 4z + 4) is a perfect square trinomial.\newline33. Factor the perfect square trinomial: (z2)2+2i=0(z - 2)^2 + 2i = 0\newlineStep Output: Factored Form: (z2)2+2i=0(z - 2)^2 + 2i = 0
  3. Solve for z: Step Title: Solve for z\newlineConcise Step Description: Solve the factored equation for z.\newlineStep Calculation: \newline11. Isolate the perfect square: (z2)2=2i(z - 2)^2 = -2i\newline22. Take the square root of both sides: z2=±2iz - 2 = \pm\sqrt{-2i}\newline33. Solve for z: z=2±2iz = 2 \pm \sqrt{-2i}\newlineStep Output: Roots: z=2±2iz = 2 \pm \sqrt{-2i}
  4. Simplify Square Root: Step Title: Simplify the Square Root of the Complex Number\newlineConcise Step Description: Simplify the square root of the complex number -2i").\(\newlineStep Calculation: \newline1. Recognize that \$\sqrt{-2i} = \sqrt{2} \times \sqrt{-i}\)\(\newline\)\(2\). Since \(\sqrt{-i} = i\sqrt{i}\) and \(\sqrt{i} = \frac{1 + i}{\sqrt{2}}\) (using the principal square root), we have \(\sqrt{-2i} = \sqrt{2} \times i \times \frac{1 + i}{\sqrt{2}}\)\(\newline\)\(3\). Simplify the expression: \(\sqrt{-2i} = i(1 + i)\)\(\newline\)\(4\). Multiply out: \(\sqrt{-2i} = i + i^2\)\(\newline\)\(5\). Since \(i^2 = -1\), we get: \(\sqrt{-2i} = i - 1\)\(\newline\)Step Output: Simplified Square Root: \(\sqrt{-2i} = i - 1\)
  5. Find Final Roots: Step Title: Find the Final Roots\(\newline\)Concise Step Description: Substitute the simplified square root back into the roots equation.\(\newline\)Step Calculation: \(\newline\)\(1\). Substitute \(\sqrt{-2i}\) with \(i - 1\) in the roots equation: \(z = 2 \pm (i - 1)\)\(\newline\)\(2\). Write out the two roots: \(z = 2 + i - 1\) and \(z = 2 - i + 1\)\(\newline\)\(3\). Simplify both roots: \(z = 1 + i\) and \(z = 3 - i\)\(\newline\)Step Output: Final Roots: \(z = 1 + i\) and \(z = 3 - i\)