Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=x^((1)/(2))*x^((2)/(3))

y=x12x23 y=x^{\frac{1}{2}} \cdot x^{\frac{2}{3}}

Full solution

Q. y=x12x23 y=x^{\frac{1}{2}} \cdot x^{\frac{2}{3}}
  1. Identify base and exponents: Identify the base and the exponents in the expression.\newlineWe have y=x12×x23y = x^{\frac{1}{2}} \times x^{\frac{2}{3}}, where xx is the base, 12\frac{1}{2} and 23\frac{2}{3} are the exponents.
  2. Apply multiplication rule: Apply the rule for multiplying powers with the same base.\newlineWhen multiplying powers with the same base, we add the exponents.\newlineSo, y=x12+23y = x^{\frac{1}{2} + \frac{2}{3}}.
  3. Find common denominator: Find a common denominator to add the fractions.\newlineThe common denominator for 22 and 33 is 66.\newlineSo, we convert the fractions: 12=36\frac{1}{2} = \frac{3}{6} and 23=46.\frac{2}{3} = \frac{4}{6}.
  4. Add converted exponents: Add the converted exponents.\newlineNow we add the exponents: 36+46=76\frac{3}{6} + \frac{4}{6} = \frac{7}{6}.\newlineSo, y=x76y = x^{\frac{7}{6}}.
  5. Write final simplified expression: Write the final simplified expression.\newlineThe simplified form of the expression is y=x76y = x^{\frac{7}{6}}.

More problems from Multiplication with rational exponents