Define Function: We need to find the derivative of the function y with respect to x, where y is defined as y=(sec(2x)+1sec(2x)−1). To do this, we will use the chain rule and the quotient rule for derivatives.
Find u′: First, let's denote the inside function as u, where u=sec(2x)+1sec(2x)−1. We will need to find the derivative of u with respect to x, which we will call u′.
Apply Quotient Rule: To find u′, we will use the quotient rule: (v′/v−u′/u)/v2, where u=sec(2x)−1 and v=sec(2x)+1. We need to find the derivatives of u and v with respect to x.
Apply Chain Rule: The derivative of sec(2x) with respect to x is 2sec(2x)tan(2x), using the chain rule. Therefore, the derivative of u with respect to x is 2sec(2x)tan(2x), and the derivative of v with respect to x is also 2sec(2x)tan(2x).
Apply Chain Rule: Now we can apply the quotient rule: u′=v2v′(u)−u′(v)=(sec(2x)+1)2(2sec(2x)tan(2x))(sec(2x)−1)−(2sec(2x)tan(2x))(sec(2x)+1).
Apply Quotient Rule: Simplifying the numerator of u′, we get: u′=(sec(2x)+1)2(2sec(2x)tan(2x)sec(2x)−2sec(2x)tan(2x)−2sec(2x)tan(2x)sec(2x)−2sec(2x)tan(2x)).
Find dudy: After canceling terms in the numerator, we find that u′=(sec(2x)+1)2−4sec(2x)tan(2x).
Apply Chain Rule: Now we need to find the derivative of y with respect to u, which we will call dudy, using the chain rule. Since y=u, dudy=21u−21.
Substitute u: Finally, we apply the chain rule to find dxdy: dxdy=dudy⋅dxdu=(21)u−21⋅(−4sec(2x)tan(2x)÷(sec(2x)+1)2).
Simplify Expression: Substitute u back into the equation to get dxdy in terms of x: \frac{dy}{dx} = \left(\frac{\(1\)}{\(2\)}\right)\left(\frac{\sec(\(2\)x) - \(1\)}{\sec(\(2\)x) + \(1\)}\right)^{-\frac{\(1\)}{\(2\)}} \times \left(-\frac{\(4\)\sec(\(2\)x)\tan(\(2\)x)}{(\sec(\(2\)x) + \(1\))^\(2\)}\right).
Simplify Expression: Substitute \(u back into the equation to get dxdy in terms of x: \frac{dy}{dx} = \frac{1}{2}\left(\frac{\sec(2x) - 1}{\sec(2x) + 1}\right)^{-\frac{1}{2}} \times \left(-\frac{4\sec(2x)\tan(2x)}{(\sec(2x) + 1)^2}\right)\. Simplify the expression to get the final answer: \$\frac{dy}{dx} = -2\sec(2x)\tan(2x) / \left(\frac{\sec(2x) - 1}{\sec(2x) + 1}\right)^{\frac{1}{2}} \times (\sec(2x) + 1)^2.
More problems from Domain and range of square root functions: equations