Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=(sec2x1sec2x+1),y=\sqrt{\left(\frac{\sec 2x-1}{\sec 2x+1}\right)}, then find dydx\frac{dy}{dx}

Full solution

Q. y=(sec2x1sec2x+1),y=\sqrt{\left(\frac{\sec 2x-1}{\sec 2x+1}\right)}, then find dydx\frac{dy}{dx}
  1. Define Function: We need to find the derivative of the function yy with respect to xx, where yy is defined as y=(sec(2x)1sec(2x)+1)y = \sqrt{\left(\frac{\sec(2x) - 1}{\sec(2x) + 1}\right)}. To do this, we will use the chain rule and the quotient rule for derivatives.
  2. Find uu': First, let's denote the inside function as uu, where u=sec(2x)1sec(2x)+1u = \frac{\sec(2x) - 1}{\sec(2x) + 1}. We will need to find the derivative of uu with respect to xx, which we will call uu'.
  3. Apply Quotient Rule: To find uu', we will use the quotient rule: (v/vu/u)/v2(v'/v - u'/u) / v^2, where u=sec(2x)1u = \sec(2x) - 1 and v=sec(2x)+1v = \sec(2x) + 1. We need to find the derivatives of uu and vv with respect to xx.
  4. Apply Chain Rule: The derivative of sec(2x)\sec(2x) with respect to xx is 2sec(2x)tan(2x)2\sec(2x)\tan(2x), using the chain rule. Therefore, the derivative of uu with respect to xx is 2sec(2x)tan(2x)2\sec(2x)\tan(2x), and the derivative of vv with respect to xx is also 2sec(2x)tan(2x)2\sec(2x)\tan(2x).
  5. Apply Chain Rule: Now we can apply the quotient rule: u=v(u)u(v)v2=(2sec(2x)tan(2x))(sec(2x)1)(2sec(2x)tan(2x))(sec(2x)+1)(sec(2x)+1)2.u' = \frac{v'(u) - u'(v)}{v^2} = \frac{(2\sec(2x)\tan(2x))(\sec(2x) - 1) - (2\sec(2x)\tan(2x))(\sec(2x) + 1)}{(\sec(2x) + 1)^2}.
  6. Apply Quotient Rule: Simplifying the numerator of uu', we get: u=(2sec(2x)tan(2x)sec(2x)2sec(2x)tan(2x)2sec(2x)tan(2x)sec(2x)2sec(2x)tan(2x))(sec(2x)+1)2u' = \frac{(2\sec(2x)\tan(2x)\sec(2x) - 2\sec(2x)\tan(2x) - 2\sec(2x)\tan(2x)\sec(2x) - 2\sec(2x)\tan(2x))}{(\sec(2x) + 1)^2}.
  7. Find dydu\frac{dy}{du}: After canceling terms in the numerator, we find that u=4sec(2x)tan(2x)(sec(2x)+1)2u' = \frac{-4\sec(2x)\tan(2x)}{(\sec(2x) + 1)^2}.
  8. Apply Chain Rule: Now we need to find the derivative of yy with respect to uu, which we will call dydu\frac{dy}{du}, using the chain rule. Since y=uy = \sqrt{u}, dydu=12u12\frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}}.
  9. Substitute u: Finally, we apply the chain rule to find dydx\frac{dy}{dx}: dydx=dydududx=(12)u12(4sec(2x)tan(2x)÷(sec(2x)+1)2)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \left(\frac{1}{2}\right)u^{-\frac{1}{2}} \cdot \left(-4\sec(2x)\tan(2x) \div (\sec(2x) + 1)^2\right).
  10. Simplify Expression: Substitute uu back into the equation to get dydx\frac{dy}{dx} in terms of xx: \frac{dy}{dx} = \left(\frac{\(1\)}{\(2\)}\right)\left(\frac{\sec(\(2\)x) - \(1\)}{\sec(\(2\)x) + \(1\)}\right)^{-\frac{\(1\)}{\(2\)}} \times \left(-\frac{\(4\)\sec(\(2\)x)\tan(\(2\)x)}{(\sec(\(2\)x) + \(1\))^\(2\)}\right).
  11. Simplify Expression: Substitute \(u back into the equation to get dydx\frac{dy}{dx} in terms of xx: \frac{dy}{dx} = \frac{1}{2}\left(\frac{\sec(2x) - 1}{\sec(2x) + 1}\right)^{-\frac{1}{2}} \times \left(-\frac{4\sec(2x)\tan(2x)}{(\sec(2x) + 1)^2}\right)\. Simplify the expression to get the final answer: \$\frac{dy}{dx} = -2\sec(2x)\tan(2x) / \left(\frac{\sec(2x) - 1}{\sec(2x) + 1}\right)^{\frac{1}{2}} \times (\sec(2x) + 1)^2.

More problems from Domain and range of square root functions: equations