Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y(12)16x2y(32)+8y23y^{\left(\frac{1}{2}\right)}\sqrt[3]{16x^{2}y^{\left(\frac{3}{2}\right)}+8y^{2}}\newlineWhich of the following expressions is equivalent to the given expression assuming y0y \geq 0 ?\newlineChoose 11 answer:\newline(A) 2y2x2+y(12)32y\sqrt[3]{2x^{2}+y^{\left(\frac{1}{2}\right)}}\newline(B) 24x2y(72)3y(12)\sqrt[3]{24x^{2}y^{\left(\frac{7}{2}\right)}}*y^{\left(\frac{1}{2}\right)}\newline(C) y16x23+2y(76)y\sqrt[3]{16x^{2}}+2y^{\left(\frac{7}{6}\right)}\newline(D)16x2y2+8y(52)3\sqrt[3]{16x^{2}y^{2}+8y^{\left(\frac{5}{2}\right)}}

Full solution

Q. y(12)16x2y(32)+8y23y^{\left(\frac{1}{2}\right)}\sqrt[3]{16x^{2}y^{\left(\frac{3}{2}\right)}+8y^{2}}\newlineWhich of the following expressions is equivalent to the given expression assuming y0y \geq 0 ?\newlineChoose 11 answer:\newline(A) 2y2x2+y(12)32y\sqrt[3]{2x^{2}+y^{\left(\frac{1}{2}\right)}}\newline(B) 24x2y(72)3y(12)\sqrt[3]{24x^{2}y^{\left(\frac{7}{2}\right)}}*y^{\left(\frac{1}{2}\right)}\newline(C) y16x23+2y(76)y\sqrt[3]{16x^{2}}+2y^{\left(\frac{7}{6}\right)}\newline(D)16x2y2+8y(52)3\sqrt[3]{16x^{2}y^{2}+8y^{\left(\frac{5}{2}\right)}}
  1. Factor out common term: Factor out the common term from the cubic root. We notice that both terms inside the cubic root have a common factor of 8y(32)8y^{\left(\frac{3}{2}\right)}. We can factor this out to simplify the expression.
  2. Factor expression inside root: Factor the expression inside the cubic root. \newline16x2y32+8y2=8y32(2x2+y12)16x^{2}y^{\frac{3}{2}} + 8y^{2} = 8y^{\frac{3}{2}}(2x^{2} + y^{\frac{1}{2}})\newlineNow we have the expression y128y32(2x2+y12)3y^{\frac{1}{2}}\cdot\sqrt[3]{8y^{\frac{3}{2}}(2x^{2} + y^{\frac{1}{2}})}.
  3. Separate cubic root of product: Apply the property of roots to separate the cubic root of the product. 8y32(2x2+y12)3=8y323×2x2+y123\sqrt[3]{8y^{\frac{3}{2}}(2x^{2} + y^{\frac{1}{2}})} = \sqrt[3]{8y^{\frac{3}{2}}} \times \sqrt[3]{2x^{2} + y^{\frac{1}{2}}}
  4. Simplify cubic root: Simplify the cubic root of 8y(3/2)8y^{(3/2)}. Since 88 is 232^3 and y(3/2)y^{(3/2)} is the cube of y(1/2)y^{(1/2)}, the cubic root of 8y(3/2)8y^{(3/2)} is 2y(1/2)2y^{(1/2)}.
  5. Combine with remaining part: Combine the simplified cubic root with the remaining part of the expression.\newlineWe now have y(12)×(2y(12)×2x2+y(12)3)y^{\left(\frac{1}{2}\right)} \times \left(2y^{\left(\frac{1}{2}\right)} \times \sqrt[3]{2x^{2} + y^{\left(\frac{1}{2}\right)}}\right).
  6. Multiply terms: Multiply y(1)/(2)y^{(1)/(2)} by 2y(1)/(2)2y^{(1)/(2)}.\newlineMultiplying these two terms gives us 2y(1)/(2)+(1)/(2)=2y(2)/(2)=2y2y^{(1)/(2) + (1)/(2)} = 2y^{(2)/(2)} = 2y.
  7. Combine with cubic root: Combine the result with the remaining cubic root.\newlineThe final expression is 2y×2x2+y(12)32y \times \sqrt[3]{2x^{2} + y^{\left(\frac{1}{2}\right)}}.

More problems from Multiplication with rational exponents