Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x-6y > 5

7x+2y >= 4
Is 
(10,-2) a solution of the system?
Choose 1 answer:
(A) Yes
(B) No

x-6 y>5 \newline7x+2y4 7 x+2 y \geq 4 \newlineIs (10,2) (10,-2) a solution of the system?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No

Full solution

Q. x6y>5 x-6 y>5 \newline7x+2y4 7 x+2 y \geq 4 \newlineIs (10,2) (10,-2) a solution of the system?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No
  1. Step 11: Check inequality with (10,2)(10, -2): Does the point (10,2)(10, -2) satisfy the inequality x-6y > 5?\newlineSubstitute x=10x = 10 and y=2y = -2 in the inequality x-6y > 5.\newline10 - 6*(-2) > 5\newline10 + 12 > 5\newline22 > 5\newlineThe point (10,2)(10, -2) satisfies the inequality x-6y > 5.
  2. Step 22: Substitute values in inequality: Does the point (10,2)(10, -2) satisfy the inequality 7x+2y47x+2y \geq 4?\newlineSubstitute x=10x = 10 and y=2y = -2 in the inequality 7x+2y47x+2y \geq 4.\newline710+2(2)47\cdot 10 + 2\cdot(-2) \geq 4\newline704470 - 4 \geq 4\newline66466 \geq 4\newlineThe point (10,2)(10, -2) satisfies the inequality 7x+2y47x+2y \geq 4.
  3. Step 33: Simplify the inequality: Is (10,2)(10, -2) a solution to the system of inequalities?\newlineSince (10,2)(10, -2) satisfies both inequalities x-6y > 5 and 7x+2y47x+2y \geq 4, it is a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of inequalities?