Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x-1=(2-x)^(2)
What are the solutions to the given equation?
Choose 1 answer:
(A) 
x=0
(B) 
x=(5-sqrt5)/(2) and

x=(5+sqrt5)/(2)
(C) 
x=(-1-sqrt21)/(2) and

x=(-1+sqrt21)/(2)
(D) The equation has no real solutions.

x1=(2x)2 x-1=(2-x)^{2} \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=0 x=0 \newline(B) x=552 x=\frac{5-\sqrt{5}}{2} and\newlinex=5+52 x=\frac{5+\sqrt{5}}{2} \newline(C) x=1212 x=\frac{-1-\sqrt{21}}{2} and\newlinex=1+212 x=\frac{-1+\sqrt{21}}{2} \newline(D) The equation has no real solutions.

Full solution

Q. x1=(2x)2 x-1=(2-x)^{2} \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=0 x=0 \newline(B) x=552 x=\frac{5-\sqrt{5}}{2} and\newlinex=5+52 x=\frac{5+\sqrt{5}}{2} \newline(C) x=1212 x=\frac{-1-\sqrt{21}}{2} and\newlinex=1+212 x=\frac{-1+\sqrt{21}}{2} \newline(D) The equation has no real solutions.
  1. Expand equation: First, we need to expand the right side of the equation (2x)2(2-x)^2.(2x)2=(2x)(2x)=44x+x2(2-x)^2 = (2-x)(2-x) = 4 - 4x + x^2
  2. Rewrite equation: Now, we rewrite the original equation with the expanded form: x1=44x+x2x - 1 = 4 - 4x + x^2
  3. Arrange equation: Next, we bring all terms to one side to set the equation to zero and arrange it in descending order of powers of x:\newlinex24x+x4+1=0x^2 - 4x + x - 4 + 1 = 0\newlinex23x3=0x^2 - 3x - 3 = 0
  4. Quadratic formula: We now have a quadratic equation. To solve for xx, we can use the quadratic formula x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}, where a=1a = 1, b=3b = -3, and c=3c = -3.
  5. Solve using formula: Plugging the values into the quadratic formula:\newlinex = [(3)±(3)24(1)(3)]/(2(1))[-(-3) \pm \sqrt{(-3)^2 - 4(1)(-3)}] / (2(1))\newlinex = [3±9+12]/2[3 \pm \sqrt{9 + 12}] / 2\newlinex = [3±21]/2[3 \pm \sqrt{21}] / 2
  6. Simplify solution: Simplifying the square root and the expression:\newlinex=3±212x = \frac{3 \pm \sqrt{21}}{2}\newlineSo we have two solutions:\newlinex=3+212x = \frac{3 + \sqrt{21}}{2}\newlinex=3212x = \frac{3 - \sqrt{21}}{2}
  7. Compare solutions: We compare our solutions with the given options:\newline(A) x=0x=0 (Incorrect)\newline(B) x=552x=\frac{5-\sqrt{5}}{2} and x=5+52x=\frac{5+\sqrt{5}}{2} (Incorrect)\newline(C) x=1212x=\frac{-1-\sqrt{21}}{2} and x=1+212x=\frac{-1+\sqrt{21}}{2} (Incorrect, sign error in the constant term)\newline(D) The equation has no real solutions. (Incorrect, we found real solutions)

More problems from Solve rational equations