Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression 
(1)/(3)ln 27-3ln 5 as a single logarithm in simplest form without any negative exponents.
Answer: 
ln(◻)

Write the expression 13ln273ln5 \frac{1}{3} \ln 27-3 \ln 5 as a single logarithm in simplest form without any negative exponents.\newlineAnswer: ln() \ln (\square)

Full solution

Q. Write the expression 13ln273ln5 \frac{1}{3} \ln 27-3 \ln 5 as a single logarithm in simplest form without any negative exponents.\newlineAnswer: ln() \ln (\square)
  1. Apply power rule: We have the expression (13)ln273ln5(\frac{1}{3})\ln 27 - 3\ln 5. We will use the logarithm power rule, which states that aln(b)=ln(ba)a \cdot \ln(b) = \ln(b^a), to simplify each term.
  2. Calculate cube root: Apply the power rule to the first term: (13)ln27=ln(2713)(\frac{1}{3})\ln 27 = \ln(27^{\frac{1}{3}}).\newlineCalculate 271327^{\frac{1}{3}}, which is the cube root of 2727.\newline2713=327^{\frac{1}{3}} = 3 because 33=273^3 = 27.\newlineSo, (13)ln27=ln(3)(\frac{1}{3})\ln 27 = \ln(3).
  3. Apply power rule: Apply the power rule to the second term: 3ln5=ln(53)3\ln 5 = \ln(5^3). Calculate 535^3. 53=1255^3 = 125. So, 3ln5=ln(125)3\ln 5 = \ln(125).
  4. Combine logarithms: Now we have ln(3)ln(125)\ln(3) - \ln(125). We will use the logarithm quotient rule, which states that ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right), to combine the two logarithms into one.
  5. Simplify to ln(3125)\ln(\frac{3}{125}): Combine the logarithms: ln(3)ln(125)=ln(3125)\ln(3) - \ln(125) = \ln(\frac{3}{125}).
  6. Simplify to ln(3125)\ln(\frac{3}{125}): Combine the logarithms: ln(3)ln(125)=ln(3125)\ln(3) - \ln(125) = \ln(\frac{3}{125}).The expression is now simplified to a single logarithm: ln(3125)\ln(\frac{3}{125}).

More problems from Power rule with rational exponents