Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
root(4)(7)*sqrt49 using rational exponents.
A. 
4^((5)/(7))
B. 
7^((5)/(4))
C. 
4^(7)
D. 
7^(4)

Write 7449 \sqrt[4]{7} \cdot \sqrt{49} using rational exponents.\newlineA. 457 4^{\frac{5}{7}} \newlineB. 754 7^{\frac{5}{4}} \newlineC. 47 4^{7} \newlineD. 74 7^{4}

Full solution

Q. Write 7449 \sqrt[4]{7} \cdot \sqrt{49} using rational exponents.\newlineA. 457 4^{\frac{5}{7}} \newlineB. 754 7^{\frac{5}{4}} \newlineC. 47 4^{7} \newlineD. 74 7^{4}
  1. Convert to Rational Exponents: Convert the fourth root and the square root to rational exponents.\newlineThe fourth root of 77 can be written as 71/47^{1/4}, and the square root of 4949 can be written as 491/249^{1/2}.
  2. Simplify Square Root: Simplify the square root of 4949.\newlineSince 4949 is a perfect square, 49(1/2)49^{(1/2)} is equal to 77.\newlineSo, we have 7(1/4)×77^{(1/4)} \times 7.
  3. Write 77 as Power: Write 77 as a power of 77 with an exponent of 11. 77 can be written as 717^{1}. So, we have 71/4×717^{1/4} \times 7^{1}.
  4. Combine Exponents: Use the property of exponents to combine the terms.\newlineWhen multiplying with the same base, add the exponents: 71/4×71=71/4+17^{1/4} \times 7^{1} = 7^{1/4 + 1}.
  5. Add Exponents: Add the exponents.\newline14+1\frac{1}{4} + 1 is the same as 14+44\frac{1}{4} + \frac{4}{4}, which equals 54\frac{5}{4}.\newlineSo, we have 7547^{\frac{5}{4}}.
  6. Match with Options: Match the result with the given options.\newlineThe expression 75/47^{5/4} matches option BB.

More problems from Multiplication with rational exponents