Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write an explicit formula for 
a_(n), the 
n^("th ") term of the sequence 
27,23,19,dots.
Answer: 
a_(n)=

Write an explicit formula for an a_{n} , the nth  n^{\text {th }} term of the sequence 27,23,19, 27,23,19, \ldots .\newlineAnswer: an= a_{n}=

Full solution

Q. Write an explicit formula for an a_{n} , the nth  n^{\text {th }} term of the sequence 27,23,19, 27,23,19, \ldots .\newlineAnswer: an= a_{n}=
  1. Sequence Type: We have the sequence: 27,23,19,27, 23, 19, \ldots\newlineIs the given sequence geometric or arithmetic?\newline27,23,19,27, 23, 19, \ldots\newlineHere, there is a common difference between consecutive terms.\newlineThe given sequence is arithmetic.
  2. Initial Values: Determine the values of a1a_1 and dd of the sequence.\newlineThe first term, a1=27a_1 = 27\newlineCommon difference, d=2327=4d = 23 - 27 = -4
  3. Explicit Formula: We have:\newlinean=a1+(n1)da_n = a_1 + (n-1)d\newlinea1=27a_1 = 27\newlined=4d = -4\newlineWrite an explicit formula to describe the sequence 27,23,19,27, 23, 19, \ldots\newlinean=a1+(n1)da_n = a_1 + (n-1)d\newlinean=27+(n1)(4)a_n = 27 + (n-1)(-4)\newlinean=274n+4a_n = 27 - 4n + 4\newlinean=314na_n = 31 - 4n

More problems from Write variable expressions for arithmetic sequences