Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write 
(1-2i)^(4) in simplest 
a+bi form.
Answer:

Write (12i)4 (1-2 i)^{4} in simplest a+bi a+b i form.\newlineAnswer:

Full solution

Q. Write (12i)4 (1-2 i)^{4} in simplest a+bi a+b i form.\newlineAnswer:
  1. Recognize pattern of powers: Recognize the pattern of powers of a complex number. \newline(12i)1=12i(1-2i)^1 = 1 - 2i\newline(12i)2=(12i)(12i)=14i+4i2=14i4(1-2i)^2 = (1 - 2i)(1 - 2i) = 1 - 4i + 4i^2 = 1 - 4i - 4 (since i2=1i^2 = -1)\newline(12i)3=(12i)(12i)2=(12i)(14i4)(1-2i)^3 = (1-2i)(1-2i)^2 = (1-2i)(1 - 4i - 4)\newlineWe need to calculate (12i)4(1-2i)^4, which is (12i)2(12i)2(1-2i)^2 * (1-2i)^2.
  2. Calculate (12i)2(1-2i)^2: Calculate (12i)2(1-2i)^2.(12i)2=14i+4i2=14i4=34i(1-2i)^2 = 1 - 4i + 4i^2 = 1 - 4i - 4 = -3 - 4i
  3. Find (12i)4(1-2i)^4: Use the result from Step 22 to find (12i)4(1-2i)^4.(12i)4=(34i)2(1-2i)^4 = (-3 - 4i)^2
  4. Square the result: Square the result from Step 33.\newline(34i)2=(3)22×3×4i+(4i)2=924i+16i2(-3 - 4i)^2 = (-3)^2 - 2 \times 3 \times 4i + (4i)^2 = 9 - 24i + 16i^2
  5. Simplify the expression: Simplify the expression by recognizing that i2=1i^2 = -1. \newline924i+16i2=924i16=724i9 - 24i + 16i^2 = 9 - 24i - 16 = -7 - 24i

More problems from Roots of integers