Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Write
(
1
−
2
i
)
4
(1-2 i)^{4}
(
1
−
2
i
)
4
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
View step-by-step help
Home
Math Problems
Algebra 2
Roots of integers
Full solution
Q.
Write
(
1
−
2
i
)
4
(1-2 i)^{4}
(
1
−
2
i
)
4
in simplest
a
+
b
i
a+b i
a
+
bi
form.
\newline
Answer:
Recognize pattern of powers:
Recognize the pattern of powers of a complex number.
\newline
(
1
−
2
i
)
1
=
1
−
2
i
(1-2i)^1 = 1 - 2i
(
1
−
2
i
)
1
=
1
−
2
i
\newline
(
1
−
2
i
)
2
=
(
1
−
2
i
)
(
1
−
2
i
)
=
1
−
4
i
+
4
i
2
=
1
−
4
i
−
4
(1-2i)^2 = (1 - 2i)(1 - 2i) = 1 - 4i + 4i^2 = 1 - 4i - 4
(
1
−
2
i
)
2
=
(
1
−
2
i
)
(
1
−
2
i
)
=
1
−
4
i
+
4
i
2
=
1
−
4
i
−
4
(since
i
2
=
−
1
i^2 = -1
i
2
=
−
1
)
\newline
(
1
−
2
i
)
3
=
(
1
−
2
i
)
(
1
−
2
i
)
2
=
(
1
−
2
i
)
(
1
−
4
i
−
4
)
(1-2i)^3 = (1-2i)(1-2i)^2 = (1-2i)(1 - 4i - 4)
(
1
−
2
i
)
3
=
(
1
−
2
i
)
(
1
−
2
i
)
2
=
(
1
−
2
i
)
(
1
−
4
i
−
4
)
\newline
We need to calculate
(
1
−
2
i
)
4
(1-2i)^4
(
1
−
2
i
)
4
, which is
(
1
−
2
i
)
2
∗
(
1
−
2
i
)
2
(1-2i)^2 * (1-2i)^2
(
1
−
2
i
)
2
∗
(
1
−
2
i
)
2
.
Calculate
(
1
−
2
i
)
2
(1-2i)^2
(
1
−
2
i
)
2
:
Calculate
(
1
−
2
i
)
2
(1-2i)^2
(
1
−
2
i
)
2
.
(
1
−
2
i
)
2
=
1
−
4
i
+
4
i
2
=
1
−
4
i
−
4
=
−
3
−
4
i
(1-2i)^2 = 1 - 4i + 4i^2 = 1 - 4i - 4 = -3 - 4i
(
1
−
2
i
)
2
=
1
−
4
i
+
4
i
2
=
1
−
4
i
−
4
=
−
3
−
4
i
Find
(
1
−
2
i
)
4
(1-2i)^4
(
1
−
2
i
)
4
:
Use the result from Step
2
2
2
to find
(
1
−
2
i
)
4
(1-2i)^4
(
1
−
2
i
)
4
.
(
1
−
2
i
)
4
=
(
−
3
−
4
i
)
2
(1-2i)^4 = (-3 - 4i)^2
(
1
−
2
i
)
4
=
(
−
3
−
4
i
)
2
Square the result:
Square the result from Step
3
3
3
.
\newline
(
−
3
−
4
i
)
2
=
(
−
3
)
2
−
2
×
3
×
4
i
+
(
4
i
)
2
=
9
−
24
i
+
16
i
2
(-3 - 4i)^2 = (-3)^2 - 2 \times 3 \times 4i + (4i)^2 = 9 - 24i + 16i^2
(
−
3
−
4
i
)
2
=
(
−
3
)
2
−
2
×
3
×
4
i
+
(
4
i
)
2
=
9
−
24
i
+
16
i
2
Simplify the expression:
Simplify the expression by recognizing that
i
2
=
−
1
i^2 = -1
i
2
=
−
1
.
\newline
9
−
24
i
+
16
i
2
=
9
−
24
i
−
16
=
−
7
−
24
i
9 - 24i + 16i^2 = 9 - 24i - 16 = -7 - 24i
9
−
24
i
+
16
i
2
=
9
−
24
i
−
16
=
−
7
−
24
i
More problems from Roots of integers
Question
Find the real-number root.
\newline
16
\sqrt{16}
16
\newline
\newline
Write your answer in simplified form.
\newline
_
_
_
_
\_\_\_\_
____
Get tutor help
Posted 1 year ago
Question
Find the real-number root.
\newline
9
16
\sqrt{\frac{9}{16}}
16
9
\newline
Simplify your answer and write it as a decimal or as a proper or improper fraction.
\newline
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Posted 1 year ago
Question
Find the real-number root using a calculator. Round your answer to the nearest thousandth.
\newline
`\sqrt{957} `
\newline
_______
Get tutor help
Posted 1 year ago
Question
Multiply. Write your answer in simplest form.
\newline
273
×
42
\sqrt{273} \times \sqrt{42}
273
×
42
\newline
______
Get tutor help
Posted 10 months ago
Question
Simplify.
\newline
63
4
\sqrt{\frac{63}{4}}
4
63
\newline
______
Get tutor help
Posted 1 year ago
Question
Simplify. Rationalize the denominator.
\newline
−
4
9
−
2
\frac{-4}{9 - \sqrt{2}}
9
−
2
−
4
\newline
______
Get tutor help
Posted 1 year ago
Question
Solve for
z
z
z
.
\newline
16
=
z
16 = \sqrt{z}
16
=
z
\newline
z
=
z =
z
=
_____
Get tutor help
Posted 1 year ago
Question
Simplify the radical expression.
14
x
14
\sqrt{14x^{14}}
14
x
14
Write your answer in the form
A
A
A
,
B
\sqrt{B}
B
, or
A
B
A\sqrt{B}
A
B
, where
A
A
A
and
B
B
B
are constants or expressions in
x
x
x
. Use at most one radical in your answer, and at most one absolute value symbol in your expression for
A
A
A
. ______
Get tutor help
Posted 1 year ago
Question
Simplify the radical expression.
\newline
12
x
12
\sqrt{12x^{12}}
12
x
12
\newline
Write your answer in the form
A
A
A
,
B
\sqrt{B}
B
, or
A
B
A\sqrt{B}
A
B
, where
A
A
A
and
B
B
B
are constants or expressions in
x
x
x
. Use at most one radical in your answer, and at most one absolute value symbol in your expression for
A
A
A
.
\newline
‾
\underline{\hspace{3cm}}
Get tutor help
Posted 1 year ago
Question
What is the value of
sin
(
5
π
6
)
?
\sin \left(\frac{5 \pi}{6}\right) ?
sin
(
6
5
π
)
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
2
-\frac{\sqrt{3}}{2}
−
2
3
\newline
(B)
−
2
2
-\frac{\sqrt{2}}{2}
−
2
2
\newline
(C)
1
2
\frac{1}{2}
2
1
\newline
(D)
150
150
150
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant