Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which value of 
x satisfies the equation 
(3)/(4)(x-(1)/(5))=-(69)/(10) ?
9
10

-10

-9

Which value of x x satisfies the equation 34(x15)=6910 \frac{3}{4}\left(x-\frac{1}{5}\right)=-\frac{69}{10} ?\newline99\newline1010\newline10 -10 \newline9 -9

Full solution

Q. Which value of x x satisfies the equation 34(x15)=6910 \frac{3}{4}\left(x-\frac{1}{5}\right)=-\frac{69}{10} ?\newline99\newline1010\newline10 -10 \newline9 -9
  1. Write Equation: Write down the equation to be solved.\newline(34)(x15)=6910(\frac{3}{4})(x - \frac{1}{5}) = -\frac{69}{10}
  2. Multiply by Reciprocal: Multiply both sides of the equation by the reciprocal of (34)(\frac{3}{4}) to isolate the term with xx.\newlineReciprocal of (34)(\frac{3}{4}) is (43)(\frac{4}{3}).\newline(43)×(34)(x15)=(43)×(6910)(\frac{4}{3}) \times (\frac{3}{4})(x - \frac{1}{5}) = (\frac{4}{3}) \times (\frac{-69}{10})
  3. Simplify Equation: Simplify both sides of the equation.\newlineThe left side simplifies to x15x - \frac{1}{5} because (43)×(34)=1(\frac{4}{3}) \times (\frac{3}{4}) = 1.\newlineThe right side simplifies to 6910×43-\frac{69}{10} \times \frac{4}{3}.\newlinex15=6910×43x - \frac{1}{5} = -\frac{69}{10} \times \frac{4}{3}
  4. Calculate Right Side: Calculate the right side of the equation.\newline6910×43=27630-\frac{69}{10} \times \frac{4}{3} = -\frac{276}{30}\newlineSimplify 27630-\frac{276}{30} by dividing both numerator and denominator by 66.\newline27630=465-\frac{276}{30} = -\frac{46}{5}\newlinex15=465x - \frac{1}{5} = -\frac{46}{5}
  5. Add 15\frac{1}{5}: Add 15\frac{1}{5} to both sides of the equation to solve for xx.x15+15=465+15x - \frac{1}{5} + \frac{1}{5} = -\frac{46}{5} + \frac{1}{5}x=465+15x = -\frac{46}{5} + \frac{1}{5}
  6. Combine Fractions: Combine the fractions on the right side of the equation.\newline465+15=46+15-\frac{46}{5} + \frac{1}{5} = \frac{-46 + 1}{5}\newline455=9-\frac{45}{5} = -9\newlinex=9x = -9

More problems from Evaluate integers raised to rational exponents