Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which value of 
x is a solution to this equation?

5x^(2)-36 x+36=0

x=-6

x=-1.8

x=4

x=1.2

Which value of xx is a solution to this equation?\newline5x236x+36=05x^{2}-36x+36=0\newlinea) x=6x=-6\newlineb) x=1.8x=-1.8\newlinec) x=4x=4\newlined) x=1.2x=1.2

Full solution

Q. Which value of xx is a solution to this equation?\newline5x236x+36=05x^{2}-36x+36=0\newlinea) x=6x=-6\newlineb) x=1.8x=-1.8\newlinec) x=4x=4\newlined) x=1.2x=1.2
  1. Check x=6x = -6: Step 11: Start by plugging each given value into the equation to check if it satisfies the equation.\newlineFirst, check x=6x = -6.\newline5(6)236(6)+36=180+216+36=4325(-6)^2 - 36(-6) + 36 = 180 + 216 + 36 = 432.
  2. Check x=1.8x = -1.8: Step 22: Check x=1.8x = -1.8.5(1.8)236(1.8)+36=16.2+64.8+36=1175(-1.8)^2 - 36(-1.8) + 36 = 16.2 + 64.8 + 36 = 117.
  3. Check x=4x = 4: Step 33: Check x=4x = 4.5(4)236(4)+36=80144+36=285(4)^2 - 36(4) + 36 = 80 - 144 + 36 = -28.
  4. Check x=1.2x = 1.2: Step 44: Check x=1.2x = 1.2.5(1.2)236(1.2)+36=7.243.2+36=05(1.2)^2 - 36(1.2) + 36 = 7.2 - 43.2 + 36 = 0.

More problems from Solve complex trigonomentric equations