Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive sequence would produce the sequence 
6,-33,162,dots ?

a_(1)=6 and 
a_(n)=3a_(n-1)-6

a_(1)=6 and 
a_(n)=-5a_(n-1)-3

a_(1)=6 and 
a_(n)=-6a_(n-1)+3

a_(1)=6 and 
a_(n)=-3a_(n-1)-5

Which recursive sequence would produce the sequence 6,33,162, 6,-33,162, \ldots ?\newlinea1=6 a_{1}=6 and an=3an16 a_{n}=3 a_{n-1}-6 \newlinea1=6 a_{1}=6 and an=5an13 a_{n}=-5 a_{n-1}-3 \newlinea1=6 a_{1}=6 and an=6an1+3 a_{n}=-6 a_{n-1}+3 \newlinea1=6 a_{1}=6 and an=3an15 a_{n}=-3 a_{n-1}-5

Full solution

Q. Which recursive sequence would produce the sequence 6,33,162, 6,-33,162, \ldots ?\newlinea1=6 a_{1}=6 and an=3an16 a_{n}=3 a_{n-1}-6 \newlinea1=6 a_{1}=6 and an=5an13 a_{n}=-5 a_{n-1}-3 \newlinea1=6 a_{1}=6 and an=6an1+3 a_{n}=-6 a_{n-1}+3 \newlinea1=6 a_{1}=6 and an=3an15 a_{n}=-3 a_{n-1}-5
  1. Test First Option: Test the first option.\newlineGiven: a1=6a_{1}=6 and an=3an16a_{n}=3a_{n-1}-6\newlineCalculate a2a_{2} using the given formula: a2=3a16=3×66=186=12a_{2}=3a_{1}-6=3\times 6-6=18-6=12\newlineCheck if this matches the sequence: 6,33,162,6, -33, 162, \ldots
  2. Incorrect First Option: Since a2a_{2} does not match the second term of the sequence, which is 33-33, the first option is incorrect.
  3. Test Second Option: Test the second option.\newlineGiven: a1=6a_{1}=6 and an=5an13a_{n}=-5a_{n-1}-3\newlineCalculate a2a_{2} using the given formula: a2=5a13=5×63=303=33a_{2}=-5a_{1}-3=-5\times6-3=-30-3=-33\newlineCheck if this matches the sequence: 6,33,162,6, -33, 162, \ldots
  4. Verify Second Option: Since a2a_{2} matches the second term of the sequence, continue to calculate a3a_{3} to verify the pattern.\newlineCalculate a3a_{3} using the given formula: a3=5a23=5(33)3=1653=162a_{3}=-5a_{2}-3=-5*(-33)-3=165-3=162\newlineCheck if this matches the sequence: 6,33,162,6, -33, 162, \ldots
  5. Correct Second Option: Since a3a_{3} matches the third term of the sequence, the second option correctly produces the sequence.

More problems from Identify a sequence as explicit or recursive