Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive sequence would produce the sequence 
5,-11,37,dots ?

a_(1)=5 and 
a_(n)=-a_(n-1)-2

a_(1)=5 and 
a_(n)=-3a_(n-1)+4

a_(1)=5 and 
a_(n)=-2a_(n-1)-1

a_(1)=5 and 
a_(n)=4a_(n-1)-3

Which recursive sequence would produce the sequence 5,11,37, 5,-11,37, \ldots ?\newlinea1=5 a_{1}=5 and an=an12 a_{n}=-a_{n-1}-2 \newlinea1=5 a_{1}=5 and an=3an1+4 a_{n}=-3 a_{n-1}+4 \newlinea1=5 a_{1}=5 and an=2an11 a_{n}=-2 a_{n-1}-1 \newlinea1=5 a_{1}=5 and an=4an13 a_{n}=4 a_{n-1}-3

Full solution

Q. Which recursive sequence would produce the sequence 5,11,37, 5,-11,37, \ldots ?\newlinea1=5 a_{1}=5 and an=an12 a_{n}=-a_{n-1}-2 \newlinea1=5 a_{1}=5 and an=3an1+4 a_{n}=-3 a_{n-1}+4 \newlinea1=5 a_{1}=5 and an=2an11 a_{n}=-2 a_{n-1}-1 \newlinea1=5 a_{1}=5 and an=4an13 a_{n}=4 a_{n-1}-3
  1. Identify first term: Identify the first term of the sequence.\newlineThe first term given is a1=5a_{1} = 5.
  2. Calculate second term: Calculate the second term using each recursive formula and compare with the given second term 11-11.\newlinea) Using the first formula: an=an12a_{n} = -a_{n-1} - 2\newlinea2=a12=52=7a_{2} = -a_{1} - 2 = -5 - 2 = -7\newlineThis does not match the given second term 11-11.
  3. Calculate third term: b) Using the second formula: an=3an1+4a_{n} = -3a_{n-1} + 4\newlinea2=3a1+4=3×5+4=15+4=11a_{2} = -3a_{1} + 4 = -3\times 5 + 4 = -15 + 4 = -11\newlineThis matches the given second term (11-11).
  4. Verify correct formula: Calculate the third term using the second formula to verify if it matches the given third term 3737.a3=3a2+4=3(11)+4=33+4=37a_{3} = -3a_{2} + 4 = -3*(-11) + 4 = 33 + 4 = 37This matches the given third term 3737.
  5. Verify correct formula: Calculate the third term using the second formula to verify if it matches the given third term 3737.a3=3a2+4=3(11)+4=33+4=37a_{3} = -3a_{2} + 4 = -3*(-11) + 4 = 33 + 4 = 37This matches the given third term 3737.Since the second formula correctly produces the first three terms of the sequence, we conclude that it is the correct recursive formula. The correct recursive sequence formula is: a1=5a_{1} = 5 and an=3an1+4a_{n} = -3a_{n-1} + 4

More problems from Identify a sequence as explicit or recursive