Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline0,15,30,45,60,75,0, 15, 30, 45, 60, 75, \ldots\newlineChoices:\newline(A)an=an1+15a_n = a_{n-1} + 15\newline(B)an=3an1a_n = 3a_{n-1}\newline(C)an=15an1a_n = 15a_{n-1}\newline(D)an=115an1a_n = \frac{1}{15}a_{n-1}

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline0,15,30,45,60,75,0, 15, 30, 45, 60, 75, \ldots\newlineChoices:\newline(A)an=an1+15a_n = a_{n-1} + 15\newline(B)an=3an1a_n = 3a_{n-1}\newline(C)an=15an1a_n = 15a_{n-1}\newline(D)an=115an1a_n = \frac{1}{15}a_{n-1}
  1. Sequence Type: We have the sequence: 0,15,30,45,60,75,0, 15, 30, 45, 60, 75, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: Find the common difference, dd.\newlineTwo consecutive terms are 00 and 1515.\newline150=1515 - 0 = 15\newlineCommon difference (dd): 1515
  3. Recursive Formula: Identify the recursive formula for the given sequence.\newlineSubstitute 1515 for dd in an=a(n1)+da_n = a_{(n-1)} + d.\newlineRecursive formula: an=a(n1)+15a_n = a_{(n-1)} + 15

More problems from Write a formula for a recursive sequence