Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline2,4,6,8,10,12,2, 4, 6, 8, 10, 12, \ldots\newlineChoices:\newline(A) an=an12a_n = a_{n-1} - 2\newline(B) an=an1+an12a_n = a_{n-1} + a_{n-1} - 2\newline(C) an=an1+2a_n = a_{n-1} + 2\newline(D) an=2an1a_n = 2a_{n-1}

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline2,4,6,8,10,12,2, 4, 6, 8, 10, 12, \ldots\newlineChoices:\newline(A) an=an12a_n = a_{n-1} - 2\newline(B) an=an1+an12a_n = a_{n-1} + a_{n-1} - 2\newline(C) an=an1+2a_n = a_{n-1} + 2\newline(D) an=2an1a_n = 2a_{n-1}
  1. Given Sequence Type: We have: 2,4,6,8,10,12,2, 4, 6, 8, 10, 12, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: 2,4,6,8,10,12,2, 4, 6, 8, 10, 12, \ldots\newlineFind the common difference, dd.\newlineTwo consecutive terms are 22 and 44.\newline42=24 - 2 = 2\newlineCommon difference (d):2(d): 2
  3. Recursive Formula Identification: 2,4,6,8,10,12,2, 4, 6, 8, 10, 12, \ldots\newlineIdentify the recursive formula for the given sequence.\newlineSubstitute 22 for dd in an=an1+da_n = a_{n-1} + d.\newlineRecursive formula: an=an1+2a_n = a_{n-1} + 2

More problems from Write a formula for a recursive sequence