Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline15,22,29,36,43,50,15, 22, 29, 36, 43, 50, \ldots\newlineChoices:\newline(A)an=an1+7a_{n} = a_{n-1} + 7\newline(B)an=2215an1a_{n} = \frac{22}{15}a_{n-1}\newline(C)an=an1+an1+7a_{n} = a_{n-1} + a_{n-1} + 7\newline(D)an=an1+an17a_{n} = a_{n-1} + a_{n-1} - 7

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline15,22,29,36,43,50,15, 22, 29, 36, 43, 50, \ldots\newlineChoices:\newline(A)an=an1+7a_{n} = a_{n-1} + 7\newline(B)an=2215an1a_{n} = \frac{22}{15}a_{n-1}\newline(C)an=an1+an1+7a_{n} = a_{n-1} + a_{n-1} + 7\newline(D)an=an1+an17a_{n} = a_{n-1} + a_{n-1} - 7
  1. Sequence Type: We have the sequence: 15,22,29,36,43,50,15, 22, 29, 36, 43, 50, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: Find the common difference, dd. Two consecutive terms are 1515 and 2222. 2215=722 - 15 = 7 Common difference (dd): 77
  3. Recursive Formula: Identify the recursive formula for the given sequence.\newlineSubstitute 77 for dd in an=a(n1)+da_n = a_{(n-1)} + d.\newlineRecursive formula: an=a(n1)+7a_n = a_{(n-1)} + 7

More problems from Write a formula for a recursive sequence