Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline5,18,31,44,57,70,5, 18, 31, 44, 57, 70, \ldots\newlineChoices:\newline(A) an=an1+13a_n = a_{n-1} + 13\newline(B) an=an113a_n = a_{n-1} - 13\newline(C) an=185an1a_n = \frac{18}{5}a_{n-1}\newline(D) an=an1+an113a_n = a_{n-1} + a_{n-1} - 13

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline5,18,31,44,57,70,5, 18, 31, 44, 57, 70, \ldots\newlineChoices:\newline(A) an=an1+13a_n = a_{n-1} + 13\newline(B) an=an113a_n = a_{n-1} - 13\newline(C) an=185an1a_n = \frac{18}{5}a_{n-1}\newline(D) an=an1+an113a_n = a_{n-1} + a_{n-1} - 13
  1. Sequence Type: We have the sequence: 5,18,31,44,57,70,5, 18, 31, 44, 57, 70, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: Find the common difference, dd. Two consecutive terms are 55 and 1818. 185=1318 - 5 = 13 Common difference (dd): 1313
  3. Recursive Formula: Identify the recursive formula for the given sequence.\newlineSubstitute 1313 for dd in an=an1+da_n = a_{n-1} + d.\newlineRecursive formula: an=an1+13a_n = a_{n-1} + 13

More problems from Write a formula for a recursive sequence