Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline4,1,6,11,16,21,-4, 1, 6, 11, 16, 21, \ldots\newlineChoices:\newline(A) an=11an1a_n = 11a_{n-1}\newline(B) an=an1+an1+5a_n = a_{n-1} + a_{n-1} + 5\newline(C) an=an1+5a_n = a_{n-1} + 5\newline(D) an=15an1a_n = \frac{1}{5}a_{n-1}

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline4,1,6,11,16,21,-4, 1, 6, 11, 16, 21, \ldots\newlineChoices:\newline(A) an=11an1a_n = 11a_{n-1}\newline(B) an=an1+an1+5a_n = a_{n-1} + a_{n-1} + 5\newline(C) an=an1+5a_n = a_{n-1} + 5\newline(D) an=15an1a_n = \frac{1}{5}a_{n-1}
  1. Given Sequence Type: We have: 4,1,6,11,16,21,-4, 1, 6, 11, 16, 21, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: 4,1,6,11,16,21,-4, 1, 6, 11, 16, 21, \ldots\newlineFind the common difference, dd.\newlineTwo consecutive terms are 4-4 and 11.\newline1(4)=51 - (-4) = 5\newlineCommon difference (dd): 55
  3. Identify Recursive Formula: 4,1,6,11,16,21,-4, 1, 6, 11, 16, 21, \ldots\newlineIdentify the recursive formula for the given sequence.\newlineSubstitute 55 for dd in an=a(n1)+da_n = a_{(n-1)} + d.\newlineRecursive formula: an=a(n1)+5a_n = a_{(n-1)} + 5

More problems from Write a formula for a recursive sequence