Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline5,19,33,47,61,75,5, 19, 33, 47, 61, 75, \ldots\newlineChoices:\newline(A) an=an1+14a_n = a_{n-1} + 14\newline(B) an=an1+an114a_n = a_{n-1} + a_{n-1} - 14\newline(C) an=14an1a_n = 14a_{n-1}\newline(D) an=195an1a_n = \frac{19}{5}a_{n-1}

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline5,19,33,47,61,75,5, 19, 33, 47, 61, 75, \ldots\newlineChoices:\newline(A) an=an1+14a_n = a_{n-1} + 14\newline(B) an=an1+an114a_n = a_{n-1} + a_{n-1} - 14\newline(C) an=14an1a_n = 14a_{n-1}\newline(D) an=195an1a_n = \frac{19}{5}a_{n-1}
  1. Determine Sequence Type: Analyze the sequence to determine if it is arithmetic or geometric.\newlineThe sequence is 5,19,33,47,61,75,5, 19, 33, 47, 61, 75, \ldots\newlineTo determine if it is arithmetic, we check if the difference between consecutive terms is constant.\newline195=1419 - 5 = 14, 3319=1433 - 19 = 14, 4733=1447 - 33 = 14, and so on.\newlineSince the difference is constant, the sequence is arithmetic.
  2. Find Common Difference: Find the common difference, dd, for the arithmetic sequence.\newlineUsing two consecutive terms, 1919 and 55, we calculate the common difference.\newlined=195=14d = 19 - 5 = 14\newlineThe common difference (dd) is 1414.
  3. Identify Recursive Formula: Identify the recursive formula for the given arithmetic sequence.\newlineSince the sequence is arithmetic with a common difference of 1414, the recursive formula will be of the form:\newlinean=an1+da_n = a_{n-1} + d\newlineSubstituting the common difference, we get:\newlinean=an1+14a_n = a_{n-1} + 14

More problems from Write a formula for a recursive sequence