Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive formula can be used to define this sequence for n > 1?\newline1,4,7,10,13,16,1, 4, 7, 10, 13, 16, \ldots\newlineChoices:\newline(A) an=4an1a_n = 4a_{n-1}\newline(B) an=an1+3a_n = a_{n-1} + 3\newline(C) an=an1+an23a_n = a_{n-1} + a_{n-2} - 3\newline(D) an=an13a_n = a_{n-1} - 3

Full solution

Q. Which recursive formula can be used to define this sequence for n>1n > 1?\newline1,4,7,10,13,16,1, 4, 7, 10, 13, 16, \ldots\newlineChoices:\newline(A) an=4an1a_n = 4a_{n-1}\newline(B) an=an1+3a_n = a_{n-1} + 3\newline(C) an=an1+an23a_n = a_{n-1} + a_{n-2} - 3\newline(D) an=an13a_n = a_{n-1} - 3
  1. Sequence Type: We have the sequence: 1,4,7,10,13,16,1, 4, 7, 10, 13, 16, \ldots\newlineIs the given sequence geometric or arithmetic?\newlineThe difference between consecutive terms is the same.\newlineThe given sequence is arithmetic.
  2. Find Common Difference: 1,4,7,10,13,16,1, 4, 7, 10, 13, 16, \ldots\newlineFind the common difference, dd.\newlineTwo consecutive terms are 44 and 11.\newline41=34 - 1 = 3\newlineCommon difference (d)(d) is 33.
  3. Identify Recursive Formula: 1,4,7,10,13,16,1, 4, 7, 10, 13, 16, \ldots\newlineIdentify the recursive formula for the given sequence.\newlineSubstitute 33 for dd in an=an1+da_n = a_{n-1} + d.\newlineRecursive formula: an=an1+3a_n = a_{n-1} + 3

More problems from Write a formula for a recursive sequence