Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
tan ((pi)/(4)) ?

tan ((7pi)/(4))

tan ((9pi)/(4))

tan ((5pi)/(4))

tan(-(7pi)/(4))

Which of the following is not equivalent to tanπ4 \tan \frac{\pi}{4} ?\newlinetan7π4 \tan \frac{7 \pi}{4} \newlinetan9π4 \tan \frac{9 \pi}{4} \newlinetan5π4 \tan \frac{5 \pi}{4} \newlinetan(7π4) \tan \left(-\frac{7 \pi}{4}\right)

Full solution

Q. Which of the following is not equivalent to tanπ4 \tan \frac{\pi}{4} ?\newlinetan7π4 \tan \frac{7 \pi}{4} \newlinetan9π4 \tan \frac{9 \pi}{4} \newlinetan5π4 \tan \frac{5 \pi}{4} \newlinetan(7π4) \tan \left(-\frac{7 \pi}{4}\right)
  1. Periodicity of Tangent Function: Understand the periodicity of the tangent function. The tangent function has a period of π\pi, which means that tan(θ)=tan(θ+nπ)\tan(\theta) = \tan(\theta + n\pi) for any integer nn.
  2. Evaluate tan(π4)\tan\left(\frac{\pi}{4}\right): Evaluate tan(π4)\tan\left(\frac{\pi}{4}\right).\newlineThe value of tan(π4)\tan\left(\frac{\pi}{4}\right) is 11 because the tangent of an angle in a right triangle with equal sides is 11.
  3. Evaluate tan(7π4)\tan\left(\frac{7\pi}{4}\right): Evaluate tan(7π4)\tan\left(\frac{7\pi}{4}\right). Using the periodicity of the tangent function, tan(7π4)\tan\left(\frac{7\pi}{4}\right) is equivalent to tan(7π42π)\tan\left(\frac{7\pi}{4} - 2\pi\right) which is tan(π4)\tan\left(-\frac{\pi}{4}\right). Since tan(θ)=tan(θ)\tan(-\theta) = -\tan(\theta), tan(π4)\tan\left(-\frac{\pi}{4}\right) = tan(π4)-\tan\left(\frac{\pi}{4}\right) = 1-1.
  4. Evaluate tan(9π4)\tan\left(\frac{9\pi}{4}\right): Evaluate tan(9π4)\tan\left(\frac{9\pi}{4}\right). Using the periodicity of the tangent function, tan(9π4)\tan\left(\frac{9\pi}{4}\right) is equivalent to tan(9π42π)\tan\left(\frac{9\pi}{4} - 2\pi\right) which is tan(π4)\tan\left(\frac{\pi}{4}\right). Therefore, tan(9π4)\tan\left(\frac{9\pi}{4}\right) = tan(π4)\tan\left(\frac{\pi}{4}\right) = 11.
  5. Evaluate tan(5π4)\tan\left(\frac{5\pi}{4}\right): Evaluate tan(5π4)\tan\left(\frac{5\pi}{4}\right). Using the periodicity of the tangent function, tan(5π4)\tan\left(\frac{5\pi}{4}\right) is equivalent to tan(5π4π)\tan\left(\frac{5\pi}{4} - \pi\right) which is tan(π4)\tan\left(\frac{\pi}{4}\right). Therefore, tan(5π4)=tan(π4)=1\tan\left(\frac{5\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1.
  6. Evaluate tan(7π4)\tan\left(-\frac{7\pi}{4}\right): Evaluate tan(7π4)\tan\left(-\frac{7\pi}{4}\right). Using the periodicity of the tangent function, tan(7π4)\tan\left(-\frac{7\pi}{4}\right) is equivalent to tan(7π4+2π)\tan\left(-\frac{7\pi}{4} + 2\pi\right) which is tan(π4)\tan\left(\frac{\pi}{4}\right). Therefore, tan(7π4)=tan(π4)=1\tan\left(-\frac{7\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1.
  7. Determine Non-Equivalent Option: Determine which option is not equivalent to tan(π4)\tan\left(\frac{\pi}{4}\right). From the previous steps, we have determined that tan(7π4)\tan\left(\frac{7\pi}{4}\right) is the only option that is not equivalent to tan(π4)\tan\left(\frac{\pi}{4}\right) because it equals 1-1, while all the other options equal 11.

More problems from Multiplication with rational exponents