Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
tan ((2pi)/(7)) ?

tan ((9pi)/(7))

tan ((16 pi)/(7))

tan(-(12 pi)/(7))

tan ((19 pi)/(7))

Which of the following is not equivalent to tan2π7 \tan \frac{2 \pi}{7} ?\newlinetan9π7 \tan \frac{9 \pi}{7} \newlinetan16π7 \tan \frac{16 \pi}{7} \newlinetan(12π7) \tan \left(-\frac{12 \pi}{7}\right) \newlinetan19π7 \tan \frac{19 \pi}{7}

Full solution

Q. Which of the following is not equivalent to tan2π7 \tan \frac{2 \pi}{7} ?\newlinetan9π7 \tan \frac{9 \pi}{7} \newlinetan16π7 \tan \frac{16 \pi}{7} \newlinetan(12π7) \tan \left(-\frac{12 \pi}{7}\right) \newlinetan19π7 \tan \frac{19 \pi}{7}
  1. Periodicity of Tangent Function: Understand the periodicity of the tangent function. The tangent function has a period of π\pi, which means that tan(θ)=tan(θ+kπ)\tan(\theta) = \tan(\theta + k\pi) for any integer kk.
  2. Evaluate tan(9π7):</b>Evaluate$tan(9π7)\tan\left(\frac{9\pi}{7}\right):</b> Evaluate \$\tan\left(\frac{9\pi}{7}\right).\newlineSince tan(θ)=tan(θ+π)\tan(\theta) = \tan(\theta + \pi), we can subtract π\pi from 9π7\frac{9\pi}{7} to see if it is equivalent to tan(2π7)\tan\left(\frac{2\pi}{7}\right).\newlinetan(9π7)=tan(9π7π)=tan(9π77π7)=tan(2π7)\tan\left(\frac{9\pi}{7}\right) = \tan\left(\frac{9\pi}{7} - \pi\right) = \tan\left(\frac{9\pi}{7} - \frac{7\pi}{7}\right) = \tan\left(\frac{2\pi}{7}\right)
  3. Evaluate tan(16π7)\tan\left(\frac{16\pi}{7}\right): Evaluate tan(16π7)\tan\left(\frac{16\pi}{7}\right). Similarly, subtract 2π2\pi from 16π7\frac{16\pi}{7} to see if it is equivalent to tan(2π7)\tan\left(\frac{2\pi}{7}\right). tan(16π7)=tan(16π72π)=tan(16π714π7)=tan(2π7)\tan\left(\frac{16\pi}{7}\right) = \tan\left(\frac{16\pi}{7} - 2\pi\right) = \tan\left(\frac{16\pi}{7} - \frac{14\pi}{7}\right) = \tan\left(\frac{2\pi}{7}\right)
  4. Evaluate tan(12π7)\tan\left(-\frac{12\pi}{7}\right): Evaluate tan(12π7)\tan\left(-\frac{12\pi}{7}\right). We can add 2π2\pi to 12π7-\frac{12\pi}{7} to see if it is equivalent to tan(2π7)\tan\left(\frac{2\pi}{7}\right). tan(12π7)=tan(12π7+2π)=tan(12π7+14π7)=tan(2π7)\tan\left(-\frac{12\pi}{7}\right) = \tan\left(-\frac{12\pi}{7} + 2\pi\right) = \tan\left(-\frac{12\pi}{7} + \frac{14\pi}{7}\right) = \tan\left(\frac{2\pi}{7}\right)
  5. Evaluate tan(19π7)\tan\left(\frac{19\pi}{7}\right): Evaluate tan(19π7)\tan\left(\frac{19\pi}{7}\right). Subtract 3π3\pi from 19π7\frac{19\pi}{7} to see if it is equivalent to tan(2π7)\tan\left(\frac{2\pi}{7}\right). tan(19π7)=tan(19π73π)=tan(19π721π7)=tan(2π7)\tan\left(\frac{19\pi}{7}\right) = \tan\left(\frac{19\pi}{7} - 3\pi\right) = \tan\left(\frac{19\pi}{7} - \frac{21\pi}{7}\right) = \tan\left(-\frac{2\pi}{7}\right) Since tan(θ)=tan(θ)\tan(\theta) = -\tan(-\theta), we have tan(2π7)=tan(2π7)\tan\left(-\frac{2\pi}{7}\right) = -\tan\left(\frac{2\pi}{7}\right).
  6. Identify Non-Equivalent Expression: Determine which expression is not equivalent to tan(2π7)\tan\left(\frac{2\pi}{7}\right). From the previous steps, we have shown that tan(9π7)\tan\left(\frac{9\pi}{7}\right), tan(16π7)\tan\left(\frac{16\pi}{7}\right), and tan(12π7)\tan\left(-\frac{12\pi}{7}\right) are all equivalent to tan(2π7)\tan\left(\frac{2\pi}{7}\right). However, tan(19π7)\tan\left(\frac{19\pi}{7}\right) is equivalent to tan(2π7)-\tan\left(\frac{2\pi}{7}\right), which is not the same as tan(2π7)\tan\left(\frac{2\pi}{7}\right).

More problems from Multiplication with rational exponents