Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
csc ((pi)/(4)) ?

csc ((9pi)/(4))

csc(-(7pi)/(4))

csc ((11 pi)/(4))

csc(-(pi)/(4))

Which of the following is not equivalent to cscπ4 \csc \frac{\pi}{4} ?\newlinecsc9π4 \csc \frac{9 \pi}{4} \newlinecsc(7π4) \csc \left(-\frac{7 \pi}{4}\right) \newlinecsc11π4 \csc \frac{11 \pi}{4} \newlinecsc(π4) \csc \left(-\frac{\pi}{4}\right)

Full solution

Q. Which of the following is not equivalent to cscπ4 \csc \frac{\pi}{4} ?\newlinecsc9π4 \csc \frac{9 \pi}{4} \newlinecsc(7π4) \csc \left(-\frac{7 \pi}{4}\right) \newlinecsc11π4 \csc \frac{11 \pi}{4} \newlinecsc(π4) \csc \left(-\frac{\pi}{4}\right)
  1. Determine Equivalent Options: We need to determine which of the given options is not equivalent to csc(π4)\csc\left(\frac{\pi}{4}\right). The cosecant function, csc(θ)\csc(\theta), is the reciprocal of the sine function, sin(θ)\sin(\theta), and has a period of 2π2\pi. This means that csc(θ)=csc(θ+2πk)\csc(\theta) = \csc(\theta + 2\pi k) for any integer kk. We will use this property to evaluate the equivalence of each option.
  2. Evaluate csc(9π4)\csc\left(\frac{9\pi}{4}\right): First, let's consider csc(9π4)\csc\left(\frac{9\pi}{4}\right). Since 9π4=2π4+7π4=π2+2π\frac{9\pi}{4} = \frac{2\pi}{4} + \frac{7\pi}{4} = \frac{\pi}{2} + 2\pi, we can see that 9π4\frac{9\pi}{4} is π2\frac{\pi}{2} plus a multiple of the period of the sine function. Therefore, csc(9π4)\csc\left(\frac{9\pi}{4}\right) is equivalent to csc(π2)\csc\left(\frac{\pi}{2}\right).
  3. Evaluate csc(7π4)\csc\left(-\frac{7\pi}{4}\right): Next, let's evaluate csc(7π4)\csc\left(-\frac{7\pi}{4}\right). Since 7π4=2π45π4=π22π-\frac{7\pi}{4} = -\frac{2\pi}{4} - \frac{5\pi}{4} = -\frac{\pi}{2} - 2\pi, we can see that 7π4-\frac{7\pi}{4} is π2-\frac{\pi}{2} minus a multiple of the period of the sine function. Therefore, csc(7π4)\csc\left(-\frac{7\pi}{4}\right) is equivalent to csc(π2)\csc\left(-\frac{\pi}{2}\right).
  4. Evaluate csc(11π4)\csc\left(\frac{11\pi}{4}\right): Now, let's look at csc(11π4)\csc\left(\frac{11\pi}{4}\right). Since 11π4=8π4+3π4=2π+3π4\frac{11\pi}{4} = \frac{8\pi}{4} + \frac{3\pi}{4} = 2\pi + \frac{3\pi}{4}, we can see that 11π4\frac{11\pi}{4} is 3π4\frac{3\pi}{4} plus a multiple of the period of the sine function. Therefore, csc(11π4)\csc\left(\frac{11\pi}{4}\right) is equivalent to csc(3π4)\csc\left(\frac{3\pi}{4}\right).
  5. Consider csc(π4)\csc\left(-\frac{\pi}{4}\right): Finally, let's consider csc(π4)\csc\left(-\frac{\pi}{4}\right). Since π4-\frac{\pi}{4} is not a multiple of the period away from π4\frac{\pi}{4}, it is not equivalent to csc(π4)\csc\left(\frac{\pi}{4}\right). Instead, csc(π4)\csc\left(-\frac{\pi}{4}\right) is equivalent to csc(2ππ4)=csc(7π4)\csc\left(2\pi - \frac{\pi}{4}\right) = \csc\left(\frac{7\pi}{4}\right), which is different from csc(π4)\csc\left(\frac{\pi}{4}\right).
  6. Compare Values: Comparing the values, we see that csc(π4)\csc\left(\frac{\pi}{4}\right), csc(9π4)\csc\left(\frac{9\pi}{4}\right), and csc(11π4)\csc\left(\frac{11\pi}{4}\right) are all equivalent because they differ by a multiple of the full period 2π2\pi. However, csc(π4)\csc\left(-\frac{\pi}{4}\right) is not equivalent to csc(π4)\csc\left(\frac{\pi}{4}\right) because it represents a different angle in the unit circle that is not a full period away from π4\frac{\pi}{4}. Therefore, csc(π4)\csc\left(-\frac{\pi}{4}\right) is the correct answer.

More problems from Multiplication with rational exponents