Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
csc ((3pi)/(8)) ?

csc(-(13 pi)/(8))

csc ((19 pi)/(8))

csc ((21 pi)/(8))

csc ((11 pi)/(8))

Which of the following is not equivalent to csc3π8 \csc \frac{3 \pi}{8} ?\newlinecsc(13π8) \csc \left(-\frac{13 \pi}{8}\right) \newlinecsc19π8 \csc \frac{19 \pi}{8} \newlinecsc21π8 \csc \frac{21 \pi}{8} \newlinecsc11π8 \csc \frac{11 \pi}{8}

Full solution

Q. Which of the following is not equivalent to csc3π8 \csc \frac{3 \pi}{8} ?\newlinecsc(13π8) \csc \left(-\frac{13 \pi}{8}\right) \newlinecsc19π8 \csc \frac{19 \pi}{8} \newlinecsc21π8 \csc \frac{21 \pi}{8} \newlinecsc11π8 \csc \frac{11 \pi}{8}
  1. Properties and Periodicity: Understand the properties of the cosecant function and periodicity. The cosecant function, csc(θ)csc(\theta), is the reciprocal of the sine function, sin(θ)sin(\theta), and has a period of 2π2\pi. This means that csc(θ+2πk)=csc(θ)csc(\theta + 2\pi k) = csc(\theta) for any integer kk. We will use this property to determine if the given options are equivalent to csc(3π8)csc\left(\frac{3\pi}{8}\right).
  2. Analyze Option 11: Analyze the first option: csc(13π8)\csc\left(-\frac{13\pi}{8}\right). Using the periodicity of the cosecant function, we can add 2π2\pi to the angle to find an equivalent positive angle: csc(13π8+2π)=csc(3π8)\csc\left(-\frac{13\pi}{8} + 2\pi\right) = \csc\left(\frac{3\pi}{8}\right). Since 13π8+2π=3π8-\frac{13\pi}{8} + 2\pi = \frac{3\pi}{8}, this option is equivalent to csc(3π8)\csc\left(\frac{3\pi}{8}\right).
  3. Analyze Option 22: Analyze the second option: csc(19π8)\csc\left(\frac{19\pi}{8}\right). Using the periodicity of the cosecant function, we can subtract 2π2\pi from the angle to find an equivalent angle: csc(19π82π)=csc(3π8)\csc\left(\frac{19\pi}{8} - 2\pi\right) = \csc\left(\frac{3\pi}{8}\right). Since 19π82π=3π8\frac{19\pi}{8} - 2\pi = \frac{3\pi}{8}, this option is also equivalent to csc(3π8)\csc\left(\frac{3\pi}{8}\right).
  4. Analyze Option 33: Analyze the third option: csc(21π8)\csc\left(\frac{21\pi}{8}\right). Using the periodicity of the cosecant function, we can subtract 2π2\pi from the angle to find an equivalent angle: csc(21π82π)=csc(5π8)\csc\left(\frac{21\pi}{8} - 2\pi\right) = \csc\left(\frac{5\pi}{8}\right). Since 21π82π=5π8\frac{21\pi}{8} - 2\pi = \frac{5\pi}{8}, this option is not equivalent to csc(3π8)\csc\left(\frac{3\pi}{8}\right). Therefore, this is the option that is not equivalent.
  5. Analyze Option 44: Analyze the fourth option: csc(11π8)\csc\left(\frac{11\pi}{8}\right). Using the periodicity of the cosecant function, we can subtract 2π2\pi from the angle to find an equivalent angle: csc(11π82π)=csc(3π8)\csc\left(\frac{11\pi}{8} - 2\pi\right) = \csc\left(\frac{3\pi}{8}\right). Since 11π82π=3π8\frac{11\pi}{8} - 2\pi = \frac{3\pi}{8}, this option is equivalent to csc(3π8)\csc\left(\frac{3\pi}{8}\right).

More problems from Multiplication with rational exponents