Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
csc ((2pi)/(5))?

csc ((7pi)/(5))

csc ((13 pi)/(5))

csc ((3pi)/(5))

csc(-(8pi)/(5))

Which of the following is not equivalent to csc2π5? \csc \frac{2 \pi}{5} ? \newlinecsc7π5 \csc \frac{7 \pi}{5} \newlinecsc13π5 \csc \frac{13 \pi}{5} \newlinecsc3π5 \csc \frac{3 \pi}{5} \newlinecsc(8π5) \csc \left(-\frac{8 \pi}{5}\right)

Full solution

Q. Which of the following is not equivalent to csc2π5? \csc \frac{2 \pi}{5} ? \newlinecsc7π5 \csc \frac{7 \pi}{5} \newlinecsc13π5 \csc \frac{13 \pi}{5} \newlinecsc3π5 \csc \frac{3 \pi}{5} \newlinecsc(8π5) \csc \left(-\frac{8 \pi}{5}\right)
  1. Determine Equivalent Options: We need to determine which of the given options is not equivalent to csc(2π5)\csc\left(\frac{2\pi}{5}\right). The cosecant function has a period of 2π2\pi, which means that csc(θ)=csc(θ+2πk)\csc(\theta) = \csc(\theta + 2\pi k) for any integer kk. We will use this property to check the equivalence of each option.
  2. Consider csc(7π5)\csc\left(\frac{7\pi}{5}\right): First, let's consider csc(7π5)\csc\left(\frac{7\pi}{5}\right). We can write 7π5\frac{7\pi}{5} as 2π5\frac{2\pi}{5} + 5π5\frac{5\pi}{5}, which simplifies to 2π5\frac{2\pi}{5} + π\pi. Since adding π\pi to an angle results in the same cosecant value but with an opposite sign, and since the cosecant function is odd, csc(7π5)\csc\left(\frac{7\pi}{5}\right) is equivalent to csc(2π5)-\csc\left(\frac{2\pi}{5}\right). Therefore, csc(7π5)\csc\left(\frac{7\pi}{5}\right) is not equivalent to csc(7π5)\csc\left(\frac{7\pi}{5}\right)11 because of the sign difference.
  3. Consider csc(13π5)\csc\left(\frac{13\pi}{5}\right): Next, let's consider csc(13π5)\csc\left(\frac{13\pi}{5}\right). We can write 13π5\frac{13\pi}{5} as 2π5\frac{2\pi}{5} + 11π5\frac{11\pi}{5}, which simplifies to 2π5\frac{2\pi}{5} + 2π2\pi + π\pi. Since adding multiples of 2π2\pi does not change the value of the cosecant function, and adding π\pi changes the sign, csc(13π5)\csc\left(\frac{13\pi}{5}\right) is equivalent to csc(13π5)\csc\left(\frac{13\pi}{5}\right)11. Therefore, csc(13π5)\csc\left(\frac{13\pi}{5}\right) is not equivalent to csc(13π5)\csc\left(\frac{13\pi}{5}\right)33 because of the sign difference.
  4. Consider csc(3π5)\csc\left(\frac{3\pi}{5}\right): Now, let's consider csc(3π5)\csc\left(\frac{3\pi}{5}\right). We can write 3π5\frac{3\pi}{5} as 2π5\frac{2\pi}{5} + π5\frac{\pi}{5}. Since we are not adding a multiple of π\pi, the cosecant value will be different. Therefore, csc(3π5)\csc\left(\frac{3\pi}{5}\right) is not equivalent to csc(2π5)\csc\left(\frac{2\pi}{5}\right).
  5. Consider csc(8π5)\csc\left(-\frac{8\pi}{5}\right): Finally, let's consider csc(8π5)\csc\left(-\frac{8\pi}{5}\right). We can write 8π5-\frac{8\pi}{5} as 2π56π5-\frac{2\pi}{5} - \frac{6\pi}{5}, which simplifies to 2π52π+π-\frac{2\pi}{5} - 2\pi + \pi. Since subtracting multiples of 2π2\pi does not change the value of the cosecant function, and subtracting π\pi changes the sign, csc(8π5)\csc\left(-\frac{8\pi}{5}\right) is equivalent to csc(2π5)-\csc\left(\frac{2\pi}{5}\right). Therefore, csc(8π5)\csc\left(-\frac{8\pi}{5}\right) is not equivalent to csc(8π5)\csc\left(-\frac{8\pi}{5}\right)00 because of the sign difference.

More problems from Multiplication with rational exponents